# ADM16F03A1 数字信号处理器

ADM16F03A1QP48Q、ADM16F03A1QN48Q

# 数据手册

编号: JXDZ3.590.031SJSC



# 湖南进芯电子科技有限公司

2024年07月 V1.4



# 目 次

| 1  | . 广面专生              | I    |
|----|---------------------|------|
| 2. | 型号命名规则              | 2    |
| 3. | 系统概述                | 3    |
| 4. | 引脚排布与说明             | 4    |
| 5. | 内存映射                | 6    |
|    | 5.1 存储空间映射          | 6    |
|    | 5.2 外设空间映射          | 7    |
| 6. | 内核说明                | 8    |
|    | 6.1 内核结构原理          | 8    |
|    | 6.2 系统寄存器           | 10   |
|    | 6.2.1 系统状态寄存器       | 10   |
|    | 6.2.2 系统控制寄存器       | 12   |
| 7  | 存储系统                | 15   |
|    | 7.1 片上存储器           | 15   |
|    | 7.2 双存取 RAM (DARAM) | 15   |
|    | 7.3 单存取 RAM (SARAM) | 15   |
|    | 7.4 闪存 Flash        | 15   |
|    | 7.4.1 Flash 说明      | 15   |
|    | 7.4.2 唯一 ID         | 16   |
|    | 7.4.3 Cache 说明      | 16   |
| 8  | 时钟系统                | 19   |
|    | 8.1 PLL 时钟模块        | 19   |
|    | 8.2 PLL 时钟模块控制寄存器   | 20   |
|    | 8.3 片内高精度 OSC       | 21   |
| 9  | 中断系统                | 22   |
|    | 9.1 中断系统结构          | 22   |
|    | 9.2 CPU 中断寄存器       | 25   |
|    | 9.3 外设中断控制寄存器       | 27   |
|    | 9.4 外设中断控制寄存器       | 32   |
| 1( | 0 看门狗               | . 34 |
|    | 10.1 看门狗模块结构框图      | 34   |

| ADM16F03A1 Digital Signal Processor | V1.4 |
|-------------------------------------|------|
| 10.2 看门狗控制寄存器                       | 35   |
| 11 硬件加速单元                           | 38   |
| 11.1 硬件加速单元功能介绍                     | 38   |
| 11.2 硬件加速单元各模块详细说明                  | 39   |
| 11.2.1 开平方根模块                       | 39   |
| 11.2.2 除法器模块                        | 41   |
| 11.2.3 Park 运算模块                    | 44   |
| 11.2.4 乘法移位器模块                      | 46   |
| 11.2.5 Cordic 模块                    | 50   |
| 12 数字 I/O 口与引脚复用功能                  | 54   |
| 12.1 数字 I/O 口与引脚复用功能描述              | 54   |
| 12.1.1 复用 I/O 引脚描述                  | 54   |
| 12.2 数字 I/O 控制寄存器                   | 55   |
| 12.2.1 I/O 端口复用控制寄存器 PORTA,PORTB    | 55   |
| 12.2.2 I/O 端口复用控制寄存器 PORTC,PORTD    | 58   |
| 12.2.3 I/O 端口复用控制寄存器 PORTE, PORTF   | 59   |
| 13 串行通信接口 SCI                       | 62   |
| 13.1 串行通信接口 SCI 功能简介                | 62   |
| 13.2 SCI 寄存器                        | 64   |
| 14 事件管理器模块 EM1                      | 70   |
| 14.1 事件管理器模块 EM1 简介                 | 70   |
| 14.2 事件管理器模块 EM1 中断                 | 71   |
| 14.2.1 事件管理器模块 EM1 中断组              | 71   |
| 14.2.2 事件管理器模块(EM1)中断控制寄存器          | 72   |
| 14.3 事件管理器 EM1 通用定时器                | 74   |
| 14.3.1 事件管理器 EM1 通用定时器控制寄存器         | 75   |
| 14.4 事件管理器模块 EM1 全功能比较单元            | 80   |
| 14.4.1 事件管理器模块 EM1 全功能比较控制寄存器       | 80   |
| 14.5 事件管理器模块 EM1 脉宽调制电路             | 82   |
| 14.5.1 PWM 特性                       | 82   |
| 14.5.2 PWM 相关寄存器                    | 83   |
| 14.6 事件管理器模块 (EM1) 捕获单元             | 84   |
| 14.6.1 事件管理器模块(EM1)捕获单元控制寄存器        | 84   |
| 14.7 正交编码脉冲(OFP) 电路                 | 86   |

| ADM16F03A1 Digital Signal Processor | V1.4 |
|-------------------------------------|------|
| 15 模数转换器 ADC                        | 87   |
| 15.1 ADC 的特性                        | 87   |
| 15.2 ADC 模块概述                       | 88   |
| 15.3 自动排序器                          | 90   |
| 15.3.1 顺序采样模式                       | 93   |
| 15.3.2 不中断的自动排序模式                   | 94   |
| 15.3.3 排序器的启/停工作模式                  | 97   |
| 15.3.4 输入触发源                        | 99   |
| 15.3.5 排序转换期间的中断操作                  | 99   |
| 15.4 ADC 时钟预分频                      | 102  |
| 15.5 ADC 校准                         | 103  |
| 15.6 片内温度传感器                        | 103  |
| 15.6.1 温度传感器传递函数                    | 103  |
| 15.7 ADC 寄存器概述                      | 105  |
| 16 运放与复用数字 IO 输入                    | 115  |
| 16.1 运放与复用数字 IO 输入说明                | 115  |
| 16.2 运放与复用数字 IO 输入寄存器               | 117  |
| 16.2.1 通道对应的配置寄 <del>存器</del>       | 117  |
| 16.2.2 OPA 与 PGA 配置寄存器              | 118  |
| 17 电压比较器                            | 121  |
| 17.1 电压比较器说明                        | 121  |
| 17.1.1 内阈值电压比较器                     | 121  |
| 17.1.2 外阈值组电压比较器                    | 122  |
| 17.1.3 电压比较器控制寄存器                   | 123  |
| 18 数字延时滤波                           | 128  |
| 18.1 数字延时滤波模块结构                     | 128  |
| 18.2 数字延时滤波模块寄存器说明                  | 129  |
| 18.2.1 数字延时滤波控制寄存器                  |      |
| 19 供电                               | 131  |
| 19.1 片上 LDO 电源管理                    |      |
| 20 栅极驱动模块                           | 133  |
| 20.1 预驱模块典型应用                       | 133  |
| 21 电气参数                             | 134  |
| 21.1 建议的运行条件                        | 134  |

| ▲ 进                                                                                   | V1.4                    |
|---------------------------------------------------------------------------------------|-------------------------|
| 21.2 建议运行温度范围内的电气特性                                                                   | 134                     |
| 21.3 减少流耗                                                                             | 134                     |
| 21.4 信号转换电平                                                                           | 135                     |
| 21.5 时序参数符号                                                                           | 136                     |
| 21.6 定时参数的通用注释                                                                        | 136                     |
| 21.7 12 位模数转换器(ADC)                                                                   | 136                     |
| 21.8 ADC 建议运行条件                                                                       | 136                     |
| 21.9 ADC 工作频率设定                                                                       | 137                     |
| 21.10 推荐工况下的 ADC 电气特性                                                                 | 137                     |
| 21.11 预驱模块参数                                                                          | 138                     |
| 21.11.1 最大额定值                                                                         | 138                     |
| 21.11.2 推荐工作条件(无特别说明情况下,测试条件为 $T_A$ =25℃)                                             | 138                     |
| 21.11.3 静态电气参数                                                                        | 139                     |
| 21.11.4 动态电气参数(无特别说明情况下, $V_{BIAS}$ = $V_{DRV}$ = $V_{B}$ =15 $V$ , $C_{L}$ =1000 $p$ | F, T <sub>A</sub> =25℃) |
|                                                                                       | 140                     |
| 22 机械数据                                                                               | 141                     |
| 23. 重要注音重质及吉阳                                                                         | 144                     |



# 图清单

| 图 3. 1   | ADM16F03A1 系统框图                           | 3   |
|----------|-------------------------------------------|-----|
| 图 4. 1   | ADM16F03A1_LQFP48 (左) 与 VQFN48 (右) 封装引脚排布 | 4   |
| 图 5. 1   | ADM16F03A1 存储空间映射                         | 6   |
| 图 5. 2   | ADM16F03A1 外设空间映射                         | 7   |
| 图 6. 1   | CPU 功能模块框图                                | 8   |
| 图 7. 1   | cache 配置流程图                               | 17  |
| 图 8. 1   | PLL 时钟模块功能框图                              | 19  |
| 图 8. 2   | PLL 时钟旁路控制信号时序                            | 19  |
| 图 9. 1   | PIE 中断硬件结构框架                              | 23  |
| 图 10. 1  | 看门狗功能框图                                   | 35  |
| 图 12. 1  | I/O 复用控制框图                                | 55  |
| 图 13. 1  | SCI 功能框图                                  | 64  |
| 图 14. 1  | 事件管理器模块 EM1 功能框图                          | 71  |
| 图 15. 1  | ADC 系统结构框图                                | 89  |
| 图 15. 2  | ADC 电源引脚连接示例                              | 90  |
| 图 15. 3  | 双排序模式下 ADC 自动排序原理框图                       | 91  |
| 图 15. 4  | 级联模式下 ADC 自动排序原理框图                        | 92  |
| 图 15. 5  | 顺序采样模式的时序                                 | 93  |
| 图 15. 6  | 不间断的自动排序模式 ADC 转换流程图                      | 96  |
| 图 15. 7  | EM1 触发源启动排序器示例                            | 98  |
| 图 15.8   | 多次排序转换之间的中断操作                             | 102 |
| 图 15. 9  | ADC 时钟预分频                                 | 103 |
| 图 15. 10 | 0 温度传感器传递函数                               | 104 |
|          | 运放与数字 I/O 复用连接                            |     |
| 图 16. 2  | PGA 等效电路                                  | 116 |
| 图 17. 1  | 比较器模块内部框架图                                | 121 |
|          | 内阈值组电压比较器框图                               |     |
| 图 17. 3  | 外阈值组电压比较器组框图                              | 123 |
| 图 18. 1  | CAP1 数字延时滤波示意图                            | 128 |
| 图 19. 1  | 芯片供电连接参考图示                                | 132 |



|  | ADM16F03A1 | <b>Digital</b> | <b>Signal</b> | <b>Processor</b> |
|--|------------|----------------|---------------|------------------|
|--|------------|----------------|---------------|------------------|

| <b>T</b> 71 | 1 1 |
|-------------|-----|
| v           | - 4 |

| 图 20. 1 |
|---------|
| 图 21. 1 |
| 图 21. 2 |
| 图 22. 1 |
|         |
|         |
|         |



# 表清单

| 表 4. 1  | ADM16F03A1 芯片引脚功能定义            |     |  |  |
|---------|--------------------------------|-----|--|--|
| 表 6. 1  | CPU 内部硬件模块说明                   |     |  |  |
| 表 8. 1  | SCSR1 寄存器配置 PLL 倍频系数表          | 20  |  |  |
| 表 8. 2  | OSC 的指标参数                      | 21  |  |  |
| 表 9. 1  | 中断源优先级与中断向量表                   | 24  |  |  |
| 表 10. 1 | WD 溢出时间选择                      | 37  |  |  |
| 表 12. 1 | 数字 I/O 模块控制寄存器                 | 55  |  |  |
| 表 14. 1 | 针对 EM1 模块和信号名称                 | 70  |  |  |
| 表 15. 1 | 不同工作模式 SEQ1 和 SEQ2 比较          | 93  |  |  |
| 表 15. 2 | 示例 2 中 CHSELSEQn 寄存器写入值        | 95  |  |  |
| 表 15. 3 | CHSELSEQ n 设定值(MAX_CONV1 设为 2) | 98  |  |  |
| 表 15. 4 | 第二次自动转换会话后的值                   | 98  |  |  |
| 表 15. 5 | 输入触发源                          | 99  |  |  |
| 表 15.6  | CALIBRATION 校准寄存器—70B8h        | 103 |  |  |
| 表 15. 7 | 温度传感器特性                        | 104 |  |  |
| 表 15.8  | ADC 相关寄存器列表                    | 105 |  |  |
| 表 16. 1 | PGA 内阻 R1 与 R2 数值              | 117 |  |  |
| 表 16. 2 | PGA 放大倍数配置关系                   | 119 |  |  |
| 表 17. 1 | COMP 迟滞电压配置关系                  | 127 |  |  |
| 表 18. 1 | 延时滤波时间参考配置表                    | 128 |  |  |
| 表 21. 1 | ADC 建议运行条件                     | 136 |  |  |
| 表 21. 2 | ADC 工作频率范围                     | 137 |  |  |
| 表 21 3  | 推荐工况下的 ADC 由气特性                | 137 |  |  |



### 1. 产品特性

### 单电源供电

- $-4.5V \sim 40V$
- 集成 LDO(预驱 12V, 内核 1.2V, 数字 IO 口 5V, 模拟 3V)

### ・高性能 16 位定点 DSP 内核

- -主频最高 150MHz
- -哈佛(Harvard)总线结构
- -快速中断响应和处理

### · 片内存储器资源

- 4K x 16 位 SARAM
- (256+256+32) x 16 位 DARAM
- 32K x 16 位 Flash

### ・运算加速单元

- -除法、开方
- -反正切
- 帕克变换
- 32 位乘加及移位

### · 17 个通用 I/O 引脚

#### ・事件管理器 EM1

- 4 个 16 位定时/计数器
- 8 路 PWM 输出

(PWM1~6 构成 3 组互补输出,

- PWM7/8 独立输出)
- 1组正交编码单元
- 3 个捕获单元(CAP1/2/3)
- 可配置 PWM 周期内中断产生和 ADC 采样触发时刻

### •集成三相高、低侧半桥驱动电路

- -六路 NMOS Pre-Driver
- -栅极驱动电路高侧浮动绝对电压可达 200V
- -驱动能力 IO+/ IO-:+1.2A/-2.0A @VDRV=12V, VBS=12V

#### ADC

- 12 位, 转换速率 1MSPS
- 16 通道,连接到片内温度传感器

- 通道排序器,可设置 ADC 采样通道序列

### • 运算放大器

- 1个 OP, 可用于母线电流信号调理
- 3 个 PGA, 可用于相电流信号调理

### ・电压比较器

- 3 个电压比较器,参考端共用, 可用于 BEMF 比较检测
- 2 个电压比较器,带参考电压 (DAC 产生),可用于保护

### 中断

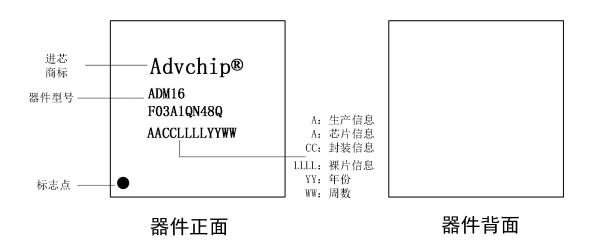
- 2个外部中断
- 29 个由 PIE 设置的外设中断

### • 数字延时滤波

- 3 组独立配置延时滤波单元, 分别对应外部中断、功率保护和 CAP1/2/3
- 串行通讯外设
  - -SCI

### 时钟

- -10M 片内振荡器
- -PLL 倍频系数 1x~15x
- ・支持 WDT
- 支持 4 线制快速程序烧录
- ・支持 JTAG 在线仿真
  - 分析和断点功能
  - 基于硬件的实时调试
- ESD 等级(HBM): 2000V
- ・ 温度范围: -40°C~125°C (通过 AEC-Q100)
- 结温: -40°C~150°C
- ・封装形式
  - LQFP48 封装
  - QFN48 封装




# 2. 型号命名规则

ADM16F03A1QN48Q产品命名规则:



### 器件标识:





### 3. 系统概述

ADM16F03A1 是一款面向无刷电机控制应用场景开发的 16 位增强型 DSP 器件, 片上集成双 LDO, 支持单电源供电模式。改进型 DSP 处理器内核与运算加速单元, 同时主频可运行到 150MHz, 可满足多种类型电机应用算法的算力要求, 并配置事件管理器、SCI 模块、12 位 ADC、运算放大器、电压比较器、6NMOS 预驱模块, 有利于用户布板的极简化。

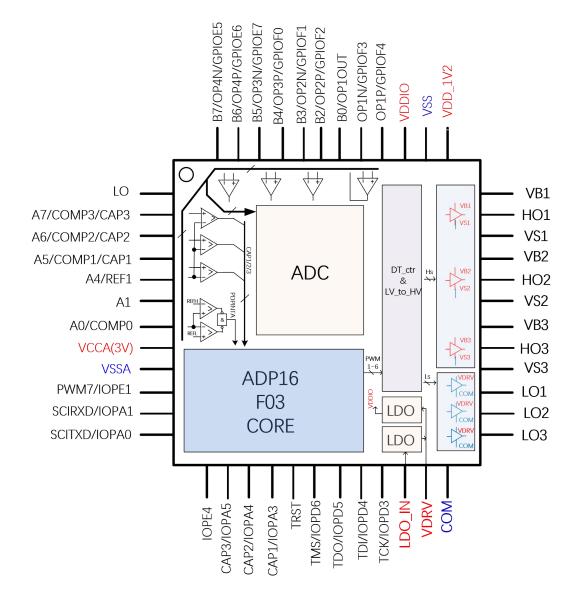
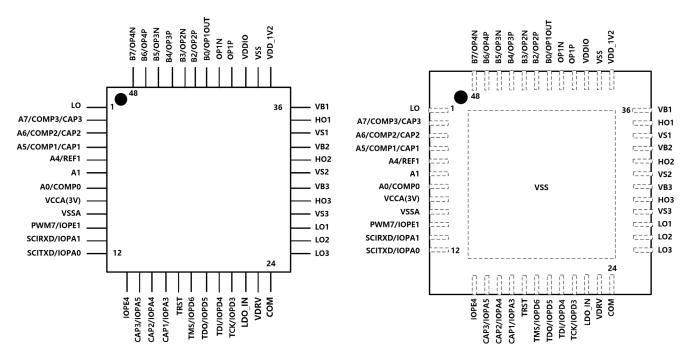




图 3.1 ADM16F03A1 系统框图



# 4. 引脚排布与说明

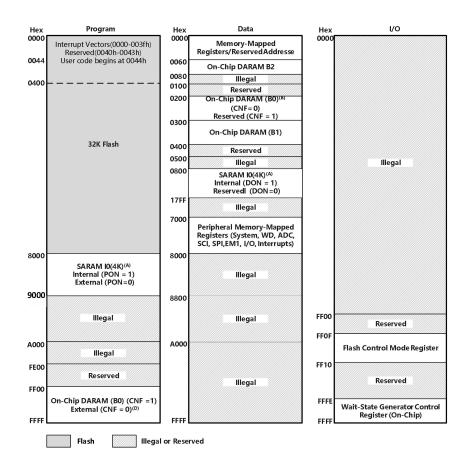


- A. GPIO 通用输入/输出引脚,所有 GPIO 在复位后默认为输入状态;
- B. 建议模拟电源地与数字电源地隔离以保持指定精度;
- C. PU 表示片内默认上拉, PD 表示片内默认下拉。

### 图 4. 1 ADM16F03A1 LQFP48 (左) 与 VQFN48 (右) 封装引脚排布

表 4. 1ADM16F03A1 芯片引脚功能定义

| 管脚 | 名称           | 类型          | PU/PD/Z | 功能说明                        |
|----|--------------|-------------|---------|-----------------------------|
| 1  | LO           | 电源          | -       | ADC 及运放参考地,连接至模拟地           |
| 2  | A7/ COMP3    | 模拟输入        | -       | ADC 输入 A7 或比较器 3 输入端        |
| 3  | A6/COMP2     | 模拟输入        | -       | ADC 输入 A6 或比较器 2 输入端        |
| 4  | A5/COMP1     | 模拟输入        | -       | ADC 输入 A5 或比较器 1 输入端        |
| 5  | A4/ REF1     | 模拟输入        | -       | ADC 输入 A4 或比较器 1、2、3 参考电压输入 |
| 6  | A1           | 模拟输入        | -       | ADC 输入 A1                   |
| 7  | A0/COMP0     | 模拟输入        | -       | ADC 输入 A0 或比较器 0 (双门限) 输入端  |
| 8  | VCCA         | 电源          | -       | 模拟 3.0V 电源,内部 LDO 产生        |
| 9  | VSSA         | 电源          | -       | 模拟地                         |
| 10 | PWM7/IOPE1   | 数字输入/输出     | PU      | PWM7 输出或 GPIOE1             |
| 11 | SCIRXD/IOPA1 | ¥たごな〉 /t◇ 川 | DII     | SCI 接收或 GPIOA1              |
| 12 | SCITXD/IOPA0 | 数字输入/输出     | PU      | SCI 发送或 GPIOA0              |
| 13 | IOPE4        | 数字输入/输出     | PU      | GPIOE4 或 Boot 引导分支控制        |




| 管脚 | 名称             | 类型        | PU/PD/Z | 功能说明                                     |
|----|----------------|-----------|---------|------------------------------------------|
| 14 | CAP3/IOPA5     |           |         | CAP3 或 GPIOA5                            |
| 15 | CAP2/IOPA4     | 数字输入/输出   | PU      | CAP2 或 GPIOA4                            |
| 16 | CAP1/IOPA3     |           |         | CAP1 或 GPIOA3                            |
| 17 | TRST           |           | PD      | JTAG 复位                                  |
| 18 | TMS/IOPD6      |           | PU      | JTAG 模式选择或 GPIOD6                        |
| 19 | TDO/IOPD5      | JTAG      | PD      | JTAG 串行输出或 GPIOD5                        |
| 20 | TDI/IOPD4      |           | PU      | JTAG 串行输入或 GPIOD4                        |
| 21 | TCK/IOPD3      |           | PU      | JTAG 时钟输入或 GPIOD3                        |
| 22 | LDO_IN         | 电源        | -       | LDO (母线) 输入引脚, 4.5~40V                   |
| 23 | VDRV           | 电源        | -       | 12V 预驱模拟电源,由内部 LDO 产生,外接 10ul<br>或更大滤波电容 |
| 24 | COM            | 电源        | _       | 预驱模拟电源参考地,外部需单点连接至 VSS                   |
| 25 | LO3            | 输出        | _       | 3-相低端驱动输出                                |
| 26 | LO2            | 输出        | _       | 2-相低端驱动输出                                |
| 27 | LO1            | 输出        | -       | 1-相低端驱动输出                                |
| 28 | VS3            | 电源        | -       | 3-相高端悬浮地                                 |
| 29 | ноз            | 输出        | -       | 3-相高端驱动输出                                |
| 30 | VB3            | 电源        | -       | 3-相自举高端电源                                |
| 31 | VS2            | 电源        | -       | 2-相高端悬浮地                                 |
| 32 | HO2            | 输出        | -       | 2-相高端驱动输出                                |
| 33 | VB2            | 电源        | -       | 2-相自举高端电源                                |
| 34 | VS1            | 电源        | -       | 1-相高端悬浮地                                 |
| 35 | HO1            | 输出        | -       | 1-相高端驱动输出                                |
| 36 | VB1            | 电源        | -       | 1-相自举高端电源                                |
| 37 | VDD_1V2        | 电源        | -       | 1.2V 内核电源输出,外接 2.2uF 电容                  |
| 38 | VSS            | 电源        | -       | 数字地                                      |
| 39 | VDDIO          | 电源        | -       | 3.3~5V 数字电源,外接 10uF+0.1uF 电容             |
| 40 | OP1P/GPIOF4    | 模拟输入      | -       | 运放 1 输入正端或 GPIOF4 输入                     |
| 41 | OP1N/GPIOF3    | 模拟输入      | -       | 运放 1 输入负端或 GPIOF3 输入                     |
| 42 | B0/OP1OUT      | 模拟输入/输出   | -       | ADC 输入 B0 或运放 1 输出端                      |
| 43 | B2/OP2P/GPIOF2 | 模拟输入/数字输入 | -       | ADC 输入 B2 或运放 2 输入正端或 GPIOF2 输入          |
| 44 | B3/OP2N/GPIOF1 | 模拟输入数字输入  | -       | ADC 输入 B3 运放 2 输入负端或 GPIOF1 输入           |
| 45 | B4/OP3P/GPIOF0 | 模拟输入数字输入  | -       | ADC 输入 B4 或运放 3 输入正端或 GPIOF0 输入          |
| 46 | B5/OP3N/GPIOE7 | 模拟输入数字输入  | -       | ADC 输入 B5 或运放 3 输入负端或 GPIOE7 输入          |
| 47 | B6/OP4P/GPIOE6 | 模拟输入数字输入  | -       | ADC 输入 B6 或运放 4 输入正端或 GPIOE6 输入          |
| 48 | B7/OP4N/GPIOE5 | 模拟输入数字输入  | -       | ADC 输入 B7 或运放 4 输入负端或 GPIOE5 输入          |



# 5. 内存映射

### 5.1 存储空间映射



- A. 单周期访问 RAM IO, 配置 PON, DON 选择映射到程序空间或数据空间;
- B. 双口 RAM BO, 通过配置 CNF 选择映射到程序空间或数据空间。

图 5.1 ADM16F03A1 存储空间映射



### 5.2 外设空间映射

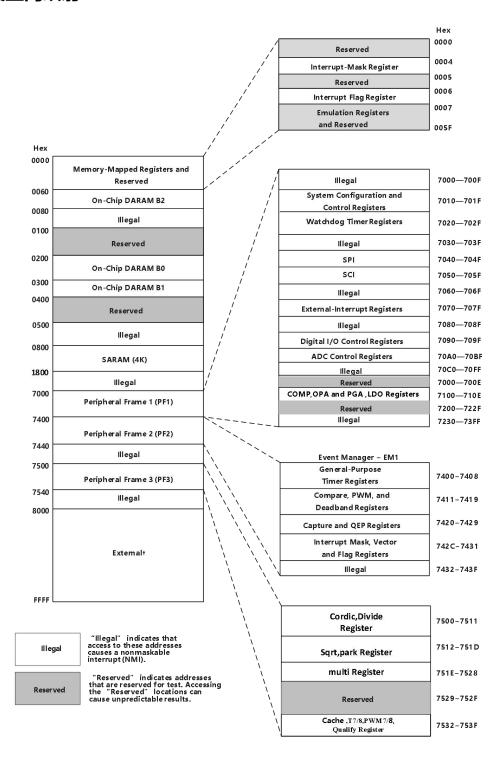



图 5.2 ADM16F03A1 外设空间映射



# 6. 内核说明

### 6.1 内核结构原理

CPU 包括一个 16 位定标移位器,一个 16 位乘 16 位并行乘法器,一个 32 位中央算 术逻辑单元,一个 32 位累加器,以及用于累加器和乘法器输出的辅助移位器。CPU 的 功能模块如图 6-1 所示,表 6-1 列出了 CPU 内部硬件模块的功能。

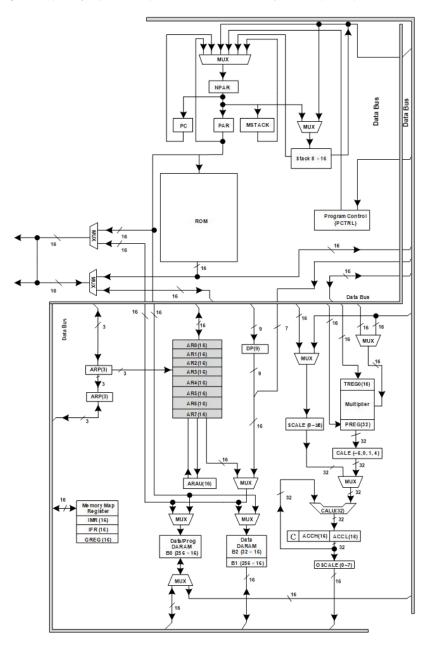



图 6.1 CPU 功能模块框图



# 进版电子 Advancechip ADM16F03A1 Digital Signal Processor

### 表 6.1 CPU 内部硬件模块说明

| 模块符号        | 模块名称                                          | 模块功能描述                                                                                                                                           |  |
|-------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ACC         | 累加器                                           | 32 位寄存器,用于保存中央算术逻辑单元 CALU 的计算结果,并为下一次 CALU 运算<br>提供输入,具有移位和循环操作功能。                                                                               |  |
| ARAU        | 辅助寄存器算术单元                                     | 无符号的 16 位运算单元,当使用辅助寄存器作为输入输出,用于计算间接地址。                                                                                                           |  |
| AUX<br>REGS |                                               | 16 位寄存器用作指向任意数据空间地址的指针。这些寄存器通过 ARAU 操作,并由辅助寄存器指针(ARP)选定。ARO 可用作 ARx(x 为 1~7)超过 1 个发生更新时的索引值,也可作为 ARx 的比较值。                                       |  |
| С           | 进位标志位                                         | CALU 进位输出寄存器。此进位被反馈到 CALU 进行扩展算术运算。C 进位标志位分配于状态寄存器 1(ST1),可通过条件指令测试。也可以用于累加器移位和循环。                                                               |  |
| CALU        | 中央算术逻辑单元                                      | 32 位主算术逻辑单元,CALU 在单个机器周期中执行 32 位操作。CALU 对来自 ISCALE<br>或 PSCALE 的数据与来自 ACC 的数据进行运算操作,并将运算后结果保存到 PCTRL<br>单元。                                      |  |
| DARAM       |                                               | 当片上 RAM 配置控制位(CNF)被设置为 0,B0(DARAM)被映射到数据空间;反之,B0 被映射到程序空间。块 B1 和 B2 被映射到数据存储器空间,地址范围为0300h~03FFh 和 0060h~007Fh。B0 和 B1 容量均为 256 个字,B2 容量为 32 个字。 |  |
| DP          | 数据存储器页指针                                      | 9 位 DP 寄存器与指令字的 7 个最低有效位(LSBs)组合形成 16 位直接存储器地址。<br>DP 可以由 LST 和 LDP 指令修改。                                                                        |  |
| GREG        |                                               | GREG 设定全局数据存储空间的大小。由于在 ADM16F03A1 器件中没有使用全局内存空间,所以此寄存器功能保留。                                                                                      |  |
| IMR         | 中断屏蔽寄存器                                       | CPU 级中断使能屏蔽寄存器。IMR 寄存器可独立配置,用于屏蔽或使能对应的中断。                                                                                                        |  |
| IFR         | 中断标志寄存器                                       | CPU 级中断标志寄存器。                                                                                                                                    |  |
| INT#        | 中断陷阱                                          | 总共 32 个可通过硬件或软件方式产生的中断。                                                                                                                          |  |
| ISCALE      | 输入数据定标移位器                                     | 16 到 32 位的桶形左移位器。ISCALE 将输入的 16 位数据的 0 到 16 位在捕获周期内向<br>左移位,以得到 32 位输出,因此输入定标移位操作不需要额外周期。                                                        |  |
| MPY         | 乘法器                                           | 16x16 位乘法器,输出 32 位乘积。MPY 在单周期内执行乘法。MPY 可进行有符号或者无符号的二进制补码算术乘法。                                                                                    |  |
| MSTACK      | 微堆栈                                           | 当程序地址生成逻辑用作生成数据空间的连续地址时,MSTACK 用于临时存储下一条<br>待取址指令的地址。                                                                                            |  |
| MUX         | 多路选择器                                         | 将多路总线复用到一个公共输入。                                                                                                                                  |  |
| NPAR        | 下一个程序地址寄存<br>AR 器 NPAR 保存程序地址总线上下一个指令周期的程序地址。 |                                                                                                                                                  |  |
| OSCALE      | 输出数据定标寄存器                                     | 16 位到 32 位的桶形左移寄存器。OSCALE 将 32 位的累加器输出左移 0 到 7 位,用以实现数据归一化,并将移位后 32 位数据的高 16 位或者低 16 位输出到数据写总线(DWEB)。                                            |  |
| PAR         | 程序地址寄存器                                       | PAR 在完成与当前总线周期相关的所有内存操作前期间内,保存当前在 PAB 上运行地址。                                                                                                     |  |



| 模块符号   | 模块名称    | 模块功能描述                                                                                  |
|--------|---------|-----------------------------------------------------------------------------------------|
| PC     | 程序计数器   | PC 计数器每次将 NPAR 的值增加 1,为取指操作和连续数据传送操作输出连续地址。                                             |
| PCTRL  | 程序控制器   | PCTRL 解码指令,管理流水线,存储状态位,并对条件操作进行解码。                                                      |
| PREG   | 乘积寄存器   | 32 位寄存器,用于保存 16x16 的乘积。                                                                 |
| PSCALE | 乘积定标移位器 | 将乘法器乘积左移 0/1/4 位,或右移 6 位。左移可得到由二进制补码乘法运算产生的附加标志位。右移可用来将数字量按比例减少,以防止 CALU 内的乘积累加溢出。      |
| STACK  | 堆栈      | 堆栈是用于存储子程序和中断服务子程序返回地址的内存块,或者用于存储数据。<br>ADM16x 定义堆栈为 16 位位宽,8 级深度。                      |
| TREG   | 临时寄存器   | 16 位寄存器,用于保存乘法运算中的一个操作数。TREG 可以保存 LACT、ADDT 和<br>SUBT 指令的移位个数,TREG 也可保存 BITT 指令的测试位的位置。 |

### 6.2 系统寄存器

### 6.2.1 系统状态寄存器

CPU 集成两个系统状态寄存器,分别为 STO 和 ST1,包含多种条件和模式下的状态定义。这两个寄存器存储在数据地址,可从数据地址加载,并支持保存微处理器状态以及恢复子程序。

可通过状态寄存器加载指令(LST)对 STO 和 ST1 进行写入操作。存储状态寄存器指令(SST)用于从 STO 和 ST1 读取,(不受 LST 指令影响的 INTM 位除外)。可借助 SETC 和 CLRC 指令对其进行逐位写 1 或清 0。下文介绍了状态寄存器 STO 和 ST1 的构成,对每个状态寄存器中包含的所有状态位进行描述。状态寄存器包含部分保留位,对保留位的读操作返回值 1。下表列出了状态寄存器字段定义。

### 1.ST0 状态寄存器

| 15~13 | 12   | 11   | 10 | 9    | 8~0  |
|-------|------|------|----|------|------|
| ARP   | OV   | OVM  | 1  | INTM | DP   |
| RW_X  | RW_X | RW_X |    | RW_1 | RW_X |

注: R=可读, W=可写, C=清除, \_0=复位值;

ARP: 辅助寄存器指针。ARP选择用于直接寻址的 AR。ARP加载时,ARP中的旧值复制到 ARB 寄存器位 15~13中。使用直接寻址时,ARP可以通过存储相关指令例如 LARP,MAR,LST 指令修改。当 LST #1 指令执



| Advance |                                                                                                                                                                                                         |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | 行时,ARP 加载与 ARB 相同的值。                                                                                                                                                                                    |
| 位 12    | OV: 溢出标志位。当算术逻辑单元产生溢出,溢出信号被锁存,OV 被置 1。溢出产生后,OV 将保持置位,直到 CPU 复位、对 OV/NOV 进行 BCND/D 操作,以及 LST 指令清除 OV 状态位。                                                                                                |
| 位 11    | OVM:溢出模式位。当 OVM 设置为 0,溢出结果在累加器上正常溢出,当设置为 1,溢出发生时累加器设置为最大正值或最小负值。SETC 指令和 CLRC 指令可对此位进行置位和清零操作。LST 指令也可以用来修改 OVM。                                                                                        |
| 位 9     | INTM:中断模式位。当 INTM 被设置为 0 代表所有的非屏蔽中断均启用。设置为 1 代表所有的屏蔽中断均为禁用状态。INTM 由 SETC INTM 和 CLRC INTM 指令置位与复位。RS 亦可设置 INTM。INTM 对不可屏蔽的 RS 和 NMI 中断没有影响。注意,INTM 不受 LST 指令的影响。系统复位时此位被默认置 1。当一个可屏蔽的中断陷阱被捕获时,它也被设置为 1。 |
| 位8~位0   | DP:数据存储器页指针。9位 DP 寄存器与指令字的7个最低有效位组合成16个位的直接存储器地址。DP可以通过LST和LDP指令修改。                                                                                                                                     |

### 2.ST1 状态寄存器

| <br>15~13 | 12  | 11 | 10  | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1~0 |
|-----------|-----|----|-----|---|---|---|---|---|---|---|---|-----|
| ARB       | CNF | TC | SXM | С | 1 | 1 | 1 | 1 | 1 | 1 | 1 | PM  |

RW\_X RW\_0 RW\_X RW\_1

RW\_00

注: R=可读, W=可写, C=清除, \_0=复位值;

| T .                                           |                                                          |
|-----------------------------------------------|----------------------------------------------------------|
| <br>  位 15~位 13                               | ARB:辅助寄存器指针缓存。当 ARP 被加载到 STO 时,旧的 ARP 值被复制到 ARB,除非       |
| <u>                                      </u> | 在一个 LST 指令中。当 ARB 通过一个 LST #1 指令加载时,同样的值也将复制到 ARP 中。     |
|                                               | CNF: 片内的 RAM 配置控制位。如果将 CNF 设置为 0,则可重新配置双寻址 RAM 块映        |
| 位 12                                          | 射到数据空间;反之,则映射到程序空间。CNF 可以通过 SETC CNF、CLRC CNF 和 LST      |
|                                               | #1 指令进行修改。系统复位时 CNF 为 0。                                 |
|                                               | TC:测试/控制标志位。TC 受 BIT, BITT, CMPR, LST # 1 和 NORM 指令的影响。当 |
| / <del>≥.</del> 11                            | BIT 或 BITT 中一个测试位为 1,或者 AR(ARP)和 ARO 之间存在 CMPR 比较测试条件,或  |
| <u>位</u> 11                                   | 者当测试 NORM 指令执行 OR 函数时累加器的 2 个最高有效位为 1 时 TC 被置位为 1。       |
|                                               | 条件跳转,调用和返回指令可基于 TC 条件执行。                                 |
|                                               | SXM: 符号扩展模式位。SXM=1 在数据通过定标移位器传递到累加器时产生符号扩展。              |
| / <del>∴</del> 10                             | SXM=0禁止符号扩展。SXM不影响某些指令的定义;例如 ADDS 指令,不管 SXM 如何,          |
| 位 10                                          | 都会禁止符号扩展。SXM 通过 SETC SXM 指令置 1,通过 CLRC SXM 指令复位清 0,且     |
|                                               | 可以通过 LST #1 指令加载。复位时 SXM 默认设置为 1。                        |
|                                               | C: 进位。如果加法运算结果产生一个进位,则 C 被置为 1,如果减法运算结果产生一个              |
|                                               | 借位,则 C 被复位为 0,反之,在加法后复位为 0 或减法之后被置位为 1,ADD 或带有           |
| 位 9                                           | 16 位移位的 SUB 指令除外。通常情况下,ADD 只能置位进位,SUB 只能复位进位,但           |
|                                               | 不能影响进位,单 bit 位的移位操作循环移位指令以及 SETC,CLRC 和 LST #1 指令均会影     |
|                                               | 响 C 的状态,复位时 C 被置位为 1。                                    |
|                                               | PM: 乘积移位方式                                               |
|                                               | PM=00,乘法器的 32 位乘积结果直接载入 CALU,不移位                         |
| 位 1~位 0                                       | PM=01,PREG 输出左移 1 位,最低位(LSB)以 0 填充后载入 CALU               |
|                                               | PM=10,PREG 输出左移 4 位,最低位(LSB)以 0 填充后载入 CALU               |
|                                               | PM=11,PREG 输出右移 6 位,并进行符号扩展                              |



注意: PREG 中的内容一直保持不变。当把 PREG 中的内容传送到 ALU 单元时,移位操作发生,PM 可由 SPM 指令和 LST #1 指令加载,复位时 PM 清 0。

### 6.2.2 系统控制寄存器

### 1. 系统控制寄存器 SCSR1—7018h

| 15              | 14         | 13         | 12        | 11        | 10         | 9       | 8       |
|-----------------|------------|------------|-----------|-----------|------------|---------|---------|
| W:pll_bypass_   | - 1        |            |           |           |            |         |         |
| R: pll_lock_flg | 保留位        | 保留位        | 保留位       | CLK_NS3   | CLK_NS2    | CLK_NS1 | CLK_NS0 |
| R_0             | RW_0       | RW_0       | RW_0      | RW_1      | RW_1       | RW_1    | RW_0    |
|                 |            |            |           |           |            |         |         |
| 7               | 6          | 5          | 4         | 3         | 2          | 1       | 0       |
| ADCCLK EN       | SCICLK EN  | SPICLK EN  | Auxiliary | Auxiliary | EM1CLK I   | EN 保留位  | ILLADR  |
| ADCCLK_LIN      | SCICER_LIN | SPICER_LIN | CLKEN 0   | CLKEN 1   | LIVITCER_I |         | ILLADK  |
| RW_0            | RW_0       | RW_0       | RW_0      | RW_0      | RW_0       | R_0     | RC_0    |

注: R=可读, W=可写, C=清除, \_0=复位值;

| 1       |                                                      |  |  |  |  |
|---------|------------------------------------------------------|--|--|--|--|
|         | PLL 时钟控制增加了 PLL 时钟在倍频锁定之前的 bypass 的功能,以保证内核稳定        |  |  |  |  |
|         | 工作,其中 SCSR1[15]在读、写时具有不同的含义,写入时是开启 PLL 倍频锁定          |  |  |  |  |
| 位 15    | 之前 bypass 控制的使能位,写入 1 代表 bypass 控制使能,默认开启,写入 0 则     |  |  |  |  |
| 12 13   | 不开启 PLL 倍频锁定之前 bypass 的功能,即 PLL 输出直接送入内核。读 SCSR1[15] |  |  |  |  |
|         | 的含义是判断 PLL 是否锁定,若读出来的 SCSR1[15]是逻辑 1,则表示 PLL 已锁      |  |  |  |  |
|         | 定,反之则表示 PLL 还未锁定。                                    |  |  |  |  |
| 位 14    | 保留                                                   |  |  |  |  |
| 位 13~12 | 保留                                                   |  |  |  |  |
| 0.44    | CLK_NS3~ CLK_NS0: PLL 倍频系数选择;                        |  |  |  |  |
| 位 11~8  | 详见表 8-1 通过 SCSR1 (0x7018) 寄存器选择 PLL 时钟               |  |  |  |  |
|         | ADCCLK_EN:ADC 模块时钟使能控制位;                             |  |  |  |  |
| 位 7     | 0:禁用 ADC 模块时钟(即:关断 ADC 模块,以降低功耗);                    |  |  |  |  |
|         | 1:使能 ADC 模块时钟;                                       |  |  |  |  |
|         | SCICLK_EN: SCI 模块时钟使能控制位;                            |  |  |  |  |
| 位 6     | 0:禁用 SCI 模块时钟 (即:关断 SCI 模块,以降低功耗);                   |  |  |  |  |
|         | 1: 使能 SCI 模块时钟;                                      |  |  |  |  |
|         | SPICLK_EN: SPI 模块时钟使能控制位;                            |  |  |  |  |
| 位 5     | 0:禁用 SPI 模块时钟 (即:关断 SPI 模块,以降低功耗);                   |  |  |  |  |



|     | 1:使能 SPI 模块时钟;                                   |  |  |  |  |  |  |
|-----|--------------------------------------------------|--|--|--|--|--|--|
|     | Auxiliary CLKEN 0:辅助寄存器 0 时钟使能控制位,辅助寄存器 0 包括运放和电 |  |  |  |  |  |  |
| 位 4 | 压比较器模块的寄存器;                                      |  |  |  |  |  |  |
|     | 0: 禁用辅助寄存器 0 时钟;                                 |  |  |  |  |  |  |
|     | 1: 使能辅助寄存器 0 时钟;                                 |  |  |  |  |  |  |
|     | Auxiliary CLKEN 1:辅助寄存器 1 时钟使能控制位,辅助寄存器 1 包括     |  |  |  |  |  |  |
|     | T7,T8,PWM7/PWM8,Cache 和数字延时滤波模块的寄存器,加速运算单元的寄     |  |  |  |  |  |  |
| 位 3 | 存器;                                              |  |  |  |  |  |  |
|     | 0: 禁用辅助寄存器 1 时钟;                                 |  |  |  |  |  |  |
|     | 1: 使能辅助寄存器 1 时钟;                                 |  |  |  |  |  |  |
|     | EM1CLK_EN:EM1 模块时钟使能控制位;                         |  |  |  |  |  |  |
| 位 2 | 0:禁用 EM1 模块时钟 (即:关断 EM1 模块,以降低功耗);               |  |  |  |  |  |  |
|     | 1: 使能 EM1 模块时钟;                                  |  |  |  |  |  |  |
| 位 1 | 保留                                               |  |  |  |  |  |  |
| 位 0 | ILLDR: 无效地址检测位;                                  |  |  |  |  |  |  |

### 2. 系统控制寄存器 SCSR2—7019h

| 15   | 14   | 13             | 12   | 11   | 10   | 9    | 8    |  |  |  |
|------|------|----------------|------|------|------|------|------|--|--|--|
|      | 保留位  |                |      |      |      |      |      |  |  |  |
|      | RW_0 |                |      |      |      |      |      |  |  |  |
| 7    | 6    | 5              | 4    | 3    | 2    | 1    | 0    |  |  |  |
| 保留位  | 保留位  | WD<br>OVERRIDE | 保留位  | 保留位  | 保留位  | DON  | PON  |  |  |  |
| RW_0 | RW_0 | RC_1           | RW_0 | RW_1 | RW_0 | RW_1 | RW_1 |  |  |  |

注: R=可读, W=可写, C=清除, \_0=复位值, S=只可被置位;

| 位 15~位 7 | 保留                                                                                                                                                                          |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 位 6      | 保留                                                                                                                                                                          |
| 位 5      | WD OVERRIDE: WD 保护位,复位时默认值为 1,允许用户通过软件将 WDCR 寄存器中的 WDDIS 位置 1 禁止 WD 工作,该位是一个只能清 0 位,通过向该位写 1 对其清 0; 0:使用户不能通过软件来禁止 WD。该位是一个只能清 0 位,不能通过软件来置 1; 1:复位时默认值,使用户能够通过软件来禁止 WD 工作; |
| 位 4      | 保留                                                                                                                                                                          |
| 位 3      | 保留                                                                                                                                                                          |



# 

V1.4

|           |       |      | <u> </u>                 |
|-----------|-------|------|--------------------------|
| 位 2       | 保留    |      |                          |
|           | SARAI | M 程序 | /数据空间选择位。                |
|           | DON   | PON  | I SARAM 状态;              |
|           | 0     | 0    | 地址空间不被映射;                |
| 位 1 ~ 位 0 | 0     | 1    | SARAM 被映射到片上程序空间;        |
|           | 1     | 0    | SARAM 被映射到片上数据空间;        |
|           | 1     | 1    | SARAM 被同时映射到片上程序空间和数据空间; |



### 7 存储系统

### 7.1 片上存储器

该系列器件配置如下内存模块:

- 4K x 16 位 SARAM
- (256+256+32) 544x 16 位 DARAM
- 32K x 16 位 Flash

### 7.2 双存取 RAM (DARAM)

该系列器件上包含 544 字×16 位的 DARAM。DARAM 允许在同一个周期内对 RAM 进行写入和读取。DARAM 配置为三个块:块0 (B0),块1 (B1)和块2 (B2)。块1 包含 256 个字,块2 包含 32 个字,并且这两个块仅映隐射到数据存储空间。块0 包含 256 个字,可以配置为数据空间或程序空间。SETC CNF (将 B0 配置为程序存储器)和 CLRC CNF (将 B0 配置为数据存储器)指令可用作允许通过软件动态配置存储器映射。

代码在 RAM 中运行时可达到 CPU 主频速率,无需配置等待状态。DARAM 允许在一个周期内执行两次访问。

# 7.3 单存取 RAM (SARAM)

该系列器件包含一块 4Kx16 位 IO SARAM,通过 SCSR2 寄存器 PON 和 DON 位配置为数据存储器、或程序存储器或程序空间与数据空间共用,有关 SCSR2 寄存器的 PON 和 DON 位配置详细信息,可请参考见 SCSR2 寄存器描述表。复位时,PON 和 DON 为 11,片上 SARAM 同时映射到程序空间和数据空间。

### 7.4 闪存 Flash

### 7.4.1 Flash 说明



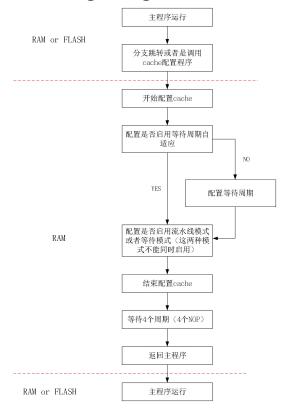
### ADM16F03A1 Digital Signal Processor

该系列器件集成一块片上闪存,大小为 32K\*16bit,映射的程序地址段为 0000h~7FFFh。其中,中断向量表空间 0000h~003Fh,保留地址段 0040~0043h 为代码安全密码。

闪存空间被分为四个扇区,扇区 0 大小为 4K\*16bit,映射到地址段 0000h~0FFFh,扇区 1 大小为 12K\*16bit,映射到地址段 1000h~3FFFh,扇区 2 大小为 12K\*16bit,映射地址段 4000h~6FFFh,扇区 3 大小为 4K\*16bit,映射到地址段 7000h~7FFFh。

### 7.4.2 唯一 ID

该系列器件设有唯一ID编码。器件完成上电完成后唯一ID编码被加载到寄存器 0X752D, 0X752C, 0X752B, 0X752A。这些寄存器均为只读寄存器。


### 7.4.3 Cache 说明

### 1. Cache 功能描述

- 1) 工作模式可配置为流水线模式或等待模式
- 2) 等待时钟周期支持用户配置或根据系统时钟频率自动调节
- 3) 缓存容量: 64bit
- 4) Cache 功能可软件关闭
- 5) 等待模式时,每当高位地址(最高位到 bit2 位)变化时,等待相应的时钟周期数(WaitNum);流水线模式时,每当高位地址(最高位到 bit2 位)变化不连续时(地址不连续),等待相应时钟周期数(WaitNum)。

### 2.配置流程





#### 备注:

- A. 禁止在 Flash 中运行 Cache 的配置代码;
- B. 配置过程应遵循上述图示流程;
- C. 系统时钟周期高于 45ns, 无需启用 Cache;
- D. 等待周期计算方法:

WaitNum= (45ns) /系统时钟周期; 去尾法取整;

E. 要使用 Cache 必须开启 PLL 倍频锁定之前 bypass 功能。

图 7.1 Cache 配置流程图

### 3. Cache 控制寄存器—753Eh

| 15      | 14      | 13               | 12   | 11    | 10   | 9       | 8          |
|---------|---------|------------------|------|-------|------|---------|------------|
| PWM8_EN | PWM7_EN | PWM8_OUT<br>_PAD | 保留位  | 保留位   | 保留位  | PipeEn  | WaitModeEn |
| RW_0    | RW_0    | RW_0             | RW_0 | RW_0  | RW_0 | RW_0    | RW_0       |
| 7       | 6       | 5                | 4    | 3     | 2    | 1       | 0          |
| 保留位     | 保留位     | 保留位              | 保留位  | AutoF |      | WaitNur | n          |
| RW_0    | R_1     | R_1              | RW_0 | RW_0  | RW_0 | RW_0    | RW_0       |

注: R=可读, W=可写, C=清除, \_0=复位值, \_1=复位值;



|           | PWM8_EN: PWM8 使能位;                    |
|-----------|---------------------------------------|
| 位 15      | 0: 禁止 PWM8 输出;                        |
|           | 1: 使能 PWM8 输出;                        |
|           | PWM7_EN: PWM7 使能位;                    |
| 位 14      | 0: 禁止 PWM7 输出;                        |
|           | 1: 使能 PWM7 输出;                        |
|           | PWM8_OUT_PAD: 使能 PWM8 输出到 pad;        |
| 位 13      | 0: 禁止 PWM8 输出到 pad;                   |
|           | 1:使能 PWM8 输出到 pad ;                   |
| 位 12~位 10 | 保留                                    |
|           | PipeEn: 流水线模式使能位:                     |
| 位 9       | 1: 启用流水线模式;                           |
|           | 0: 关闭流水线模式;                           |
|           | WaitModeEn:等待模式使能位:                   |
| 位 8       | 1: 启用等待模式;                            |
|           | 0: 关闭等待模式;                            |
| 位 7~位4    | 保留                                    |
|           | AutoF: 频率自适应使能位:                      |
| 位 3       | 1: 等待周期根据频率自动调整;                      |
|           | 0:等待周期为 WaitNum 中的配置值;                |
|           | WaitNum:等待周期控制位,读取 flash 中的数据需要等待的周期。 |
| 42 42     | 当 AutoF=1 时,此位不用配置。                   |
| 位 2~位 0   | 当 AutoF=0 时:                          |
|           | WaitNum=(45ns/系统时钟周期);去尾法取整;          |

- 1) Cache 控制寄存器在使用前应先使能辅助寄存器 1 的时钟;
- 2) 流水线模式和等待模式同时启用时,等待模式优先级更高。



### 8 时钟系统

### 8.1 PLL 时钟模块

该系列器件集成一个片载、基于 PLL 的时钟模块。此模块为器件提供所有需要的时钟信号,以及控制器件进入低功耗模式。PLL 通过 4 个 bit 位 SCSR1[11:8],CLK\_NS3, CLK NS2, CLK NS1, CLK NS0 控制和选择不同的 CPU 时钟频率。

PLL 时钟控制增加了 PLL 时钟在倍频锁定之前的旁路功能,以保证内核稳定工作,其中 SCSR1[15]在读、写具有不同的含义,写操作代表开启 PLL 倍频锁定之前 bypass 控制的使能位,写入 1 开启,默认开启,写入 0 则不开启 PLL 倍频锁定之前 bypass 的功能,即 PLL 输出直接送入内核。读 SCSR1[15]的含义是判断 PLL 是否锁定,若读出来的 SCSR1[15]是逻辑 1,则表示 PLL 已锁定,反之则表示 PLL 还未锁定。

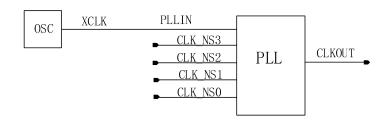



图 8.1 PLL 时钟模块功能框图

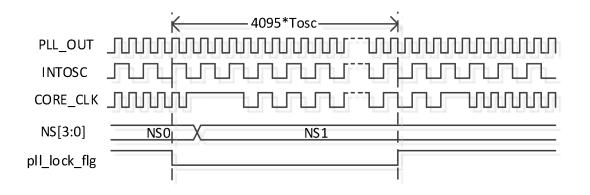



图 8.2 PLL 时钟旁路控制信号时序



# 进版电子 Advancechip ADM16F03A1 Digital Signal Processor

### 表 8. 1 SCSR1 寄存器配置 PLL 倍频系数表

| CLK NS[3:0] | PLLOUT    | CLK NS[3:0] | PLLOUT    |
|-------------|-----------|-------------|-----------|
| 0000        | PLLIN *1  | 0001        | PLLIN *1  |
| 0010        | PLLIN *2  | 0011        | PLLIN *3  |
| 0100        | PLLIN *4  | 0101        | PLLIN *5  |
| 0110        | PLLIN *6  | 0111        | PLLIN *7  |
| 1000        | PLLIN *8  | 1001        | PLLIN *9  |
| 1010        | PLLIN *10 | 1011        | PLLIN *11 |
| 1100        | PLLIN *12 | 1101        | PLLIN *13 |
| 1110        | PLLIN *14 | 1111        | PLLIN *15 |

# 8.2 PLL 时钟模块控制寄存器

### 1. 系统控制寄存器 SCSR1—7018h

| 15                                 |                                                                                                                                                                                                                                                     | 14     | 13                         | 12                   | 11                   | 10        | 9       | 8       |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------|----------------------|----------------------|-----------|---------|---------|
| W:pll_bypass_en<br>R: pll_lock_flg |                                                                                                                                                                                                                                                     | 保留位    | · 保留位                      | 保留位                  | CLK_NS3              | CLK_NS2   | CLK_NS1 | CLK_NS0 |
| R_0                                |                                                                                                                                                                                                                                                     | RW_0   | RW_0                       | RW_0                 | RW_1                 | RW_1      | RW_1    | RW_0    |
| 注: R=可读                            | , W=ī                                                                                                                                                                                                                                               | 可写,C=  | 清除,_0=复位·                  | 值;                   |                      |           |         |         |
| 7                                  |                                                                                                                                                                                                                                                     | 6      | 5                          | 4                    | 3                    | 2         | 1       | 0       |
| ADCCLK_EN                          | SCI                                                                                                                                                                                                                                                 | CLK_EN | SPICLK_EN                  | Auxiliary<br>CLKEN 0 | Auxiliary<br>CLKEN 1 | EM1CLK_EN | 保留位     | ILLADR  |
| RW_0                               | F                                                                                                                                                                                                                                                   | RW_0   | RW_0                       | RW_0                 | RW_0                 | RW_0      | R_0     | RC_0    |
| 位 15                               | PLL 时钟控制增加了 PLL 时钟在倍频锁定之前的 bypass 的功能,以保证内核稳定工作,其中 SCSR1[15]在读写时分别具有不同的含义,写入时是开启 PLL 倍频锁定之前 bypass 控制的使能 位,"1"有效,默认开启,若是"0"则不开启 PLL 倍频锁定之前 bypass 的功能,即 PLL 输出 直接送入内核。读 SCSR1[15]的含义是判断 PLL 是否锁定,若读出来的 SCSR1[15]是"1",则表示 PLL 已锁定,若是"0"则表示 PLL 还未锁定。 |        |                            |                      |                      |           |         |         |
| 位 14                               | 保留                                                                                                                                                                                                                                                  |        |                            |                      |                      |           |         |         |
| 位 13~12                            | 保留                                                                                                                                                                                                                                                  |        |                            |                      |                      |           |         |         |
| 位 11~8                             | _                                                                                                                                                                                                                                                   |        | 《_NS0: PLL 倍<br>8-1 通过 SCS |                      | )寄存器选择               | S PLL 时钟  |         |         |
| 位 7                                | 详细配置参考表 8-1 通过 SCSR1 (0x7018) 寄存器选择 PLL 时钟         ADCCLK_EN: ADC 模块时钟使能控制位;         0: 禁用 ADC 模块时钟 (关断 ADC 模块时钟可降低功耗);         1: 使能 ADC 模块时钟;                                                                                                     |        |                            |                      |                      |           |         |         |
| 位 6                                |                                                                                                                                                                                                                                                     | _      | CI 模块时钟使能块时钟 (关断           |                      | 中可降低功耗)              | ;         |         |         |



# 进版电子 Advancechip ADM16F03A1 Digital Signal Processor

|     | 1: 使能 SCI 模块时钟;                                                |
|-----|----------------------------------------------------------------|
|     | SPICLK_EN: SPI 模块时钟使能控制位;                                      |
| 位 5 | 0: 禁用 SPI 模块时钟 (关断 SPI 模块时钟可降低功耗);                             |
|     | 1:使能 SPI 模块时钟;                                                 |
|     | Auxiliary CLKEN 0: 辅助寄存器 0 时钟使能控制位, 辅助寄存器 0 包括运放相关寄存器与电压比      |
| 位 4 | 较相关寄存器;                                                        |
|     | 0: 禁用辅助寄存器 0 时钟;                                               |
|     | 1: 使能辅助寄存器 0 时钟;                                               |
|     | Auxiliary CLKEN 1: 辅助寄存器 1 时钟使能控制位。辅助寄存器 1 包含 T7、T8、PWM7、PWM8, |
|     | Cache 模块、数字延时滤波以及加速运算单元寄存器;                                    |
| 位3  | 0: 禁用辅助寄存器 1 时钟;                                               |
|     | 1: 使能辅助寄存器 1 时钟;                                               |
|     | EM1CLK_EN: EM1 模块时钟使能控制位;                                      |
| 位 2 | 0:禁用 EM1 模块时钟 (关断 EM1 模块时钟可降低功耗);                              |
|     | 1: 使能 EM1 模块时钟;                                                |
| 位1  | 保留                                                             |
| 位 0 | ILLDR: 无效地址检测位;                                                |

# 8.3 片内高精度 OSC

该系列器件集成高精度无引脚 OSC 模块,为 PLL 模块提供时钟源,无需片外晶振。 OSC 的典型输出频率为 10MHz, 其指标参数如表 8.2 所示:

表 8. 2 OSC 的指标参数

| 指标参数              | 最小值   | 典型值    | 最大值    | 单位  |
|-------------------|-------|--------|--------|-----|
| OSC 在-40℃~125℃时频率 | 9.800 | 10.000 | 10.200 | MHz |



### 9 中断系统

### 9.1 中断系统结构

该系列器件集成软件可编程中断,结构灵活且支持片上和外部中断配置,以满足高实时应用中的中断响应需求。可识别的中断源包括下述三种类型。

- 复位(由硬件或软件触发)不受 CPU 的限制,并立即优先于任意其它执行功能。所有可屏蔽的中断都被禁用,直到复位后用户程序启用。
  - 器件复位源:一个看门狗定时器超时(复位)。
- 硬件产生的中断请求有外部引脚和片上外设请求。这两种类型如下:
  - 外部中断请求由 XINT1、XINT2 和电压比较器(输入到 PDPINTA 信号)产生。
     这三个外部中断信号由 CPU 的中断屏蔽寄存器 (IMR) 使能或者屏蔽,IMR 寄存器可以屏蔽 DSP 内核任一可屏蔽中断线。
  - 外设中断是由片上事件管理器 EM1, SPI, SCI, ADC 外设模块事件触发产生。
     它们可以通过每个外设中的特定事件的使能位以及 CPU 的 IMR 来屏蔽, IMR 寄存器可以屏蔽 DSP 内核任一可屏蔽中断线。
- 该系列器件的软件产生的中断包括:
  - INTR 指令。该指令允许用软件初始化任一中断。其操作数表示 CPU 分支到的中断向量位置。该指令可禁止全局可屏蔽中断(将 INTM 位置 1)。
  - NMI 指令。该指令迫使分支中断向量指向位置 24H。该指令可禁止全局可屏蔽中断。该系列器件未配置 NMI 硬件信号,仅支持软件触发。
  - TRAP 指令。该指令迫使 CPU 分支到指向位置 22H 的中断向量。TRAP 指令不能禁止可屏蔽中断(INTM 未设置为 1)因此,当 CPU 分支到 TRAP 中断服务程序时,仍可触发响应其它可屏蔽硬件中断。
  - 一 仿真器陷阱。该中断可以通过 INTR 指令或 TRAP 指令产生。



六个内核中断 (INT1-INT6) 前级通过外设中断扩展(PIE)进行控制, PIE 管理来自外设级中断,并分组到六个内核中断。PIE 中断硬件结构框架如图 9.1 所示,表 9.1 列举出PIE 与 CPU 中断向量对应关系。

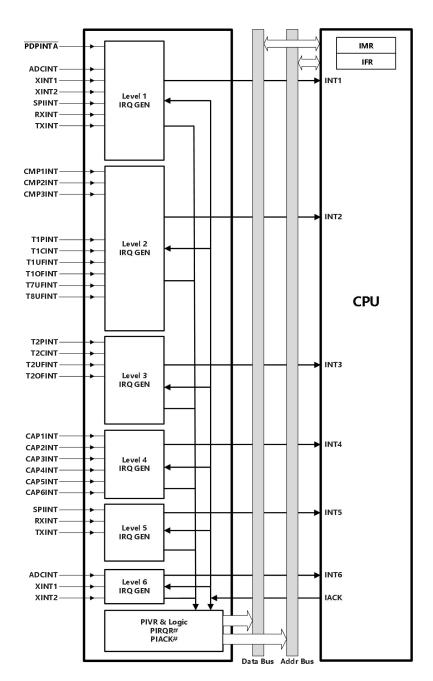



图 9.1 PIE 中断硬件结构框架



# 

### 表 9.1 中断源优先级与中断向量表

| 1        |     | 1              |                                 |                 |                 |            |                       |
|----------|-----|----------------|---------------------------------|-----------------|-----------------|------------|-----------------------|
| 中断名称     | 优先级 | CPU 中断向<br>量地址 | PIRQRx 和<br>PIACKRx<br>对应 bit 位 | 外设中断向<br>量(PIE) | 中断是<br>否可屏<br>蔽 | 外设模块       | 描述                    |
| Reset    | 1   | RSN<br>0000h   |                                 | N/A             | 否               | RS引脚,看门狗   | 管脚复位,看门狗超<br>时复位      |
| Reserved | 2   | -<br>0026h     |                                 | N/A             | 否               | СРИ        | <br>  仿真器陷阱<br>       |
| NMI      | 3   | NMI<br>0024h   |                                 | N/A             | 否               | 非屏蔽中断      | 不可屏蔽中断, 软件            |
| PDPINTA  | 4   | 902            | 0.0                             | 0020h           | 是               | EM1        | 电力设备保护中断引 脚           |
| ADCINT   | 5   |                | 0.1                             | 0004h           | 是               | ADC        | ADC 中断 (高优先级模式)       |
| XINT1    | 6   |                | 0.2                             | 0001h           | 是               | 外部中断逻辑     | 外部中断引脚                |
| XINT2    | 7   | INT1<br>0002h  | 0.3                             | 0011h           | 是               | 外部中断逻辑     | (高优先进模式)              |
| SPIINT   | 8   |                | 0.4                             | 0005h           | 是               | SPI        | SPI 中断引脚(高优<br>先级模式)  |
| RXINT    | 9   |                | 0.5                             | 0006h           | 是               | SCI        | SCI 接收中断(高优<br>先级模式)  |
| TXINT    | 10  |                | 0.6                             | 0007h           | 是               | SCI        | SCI 发送中断 (高优<br>先级模式) |
| CMP1INT  | 11  |                | 0.9                             | 0021h           | 是               | EM1        | 比较器 1 产生中断            |
| CMP2INT  | 12  |                | 0.10                            | 0022h           | 是               | EM1        | <br>  比较器 2 产生中断<br>  |
| CMP3INT  | 13  |                | 0.11                            | 0023h           | 是               | EM1        | 比较器 3 产生中断            |
| T1PINT   | 14  | INT2<br>0004h  | 0.12 0027h 是 EM1                |                 | EM1             | 定时器 1 周期中断 |                       |
| T1CINT   | 15  |                | 0.13                            | 0028h           | 是               | EM1        | 定时器 1 比较中断            |
| T1UFINT  | 16  |                | 0.14                            | 0029h           | 是               | EM1        | 定时器 1 下溢中断            |
| T10FINT  | 17  |                | 0.15                            | 002Ah           | 是               | EM1        | 定时器 1 溢出中断            |
| T7UFINT  | 18  |                | 2.6                             | 0031h           | 是               | EM1        | 定时器 7 下溢中断            |



ADM16F03A1 Digital Signal Processor

V1.4

|                |     | DIVITOR OF      |      | 21 <b>5</b> 1101 |     | 301    | , 1111               |
|----------------|-----|-----------------|------|------------------|-----|--------|----------------------|
| T8UFINT        | 19  |                 | 2.7  | 0032h            | 是   | EM1    | 定时器8下溢中断             |
| T2PINT         | 20  |                 | 1.0  | 002Bh            | 是   | EM1    | 定时器 2 周期中断           |
| T2CINT         | 21  | INT3            | 1.1  | 002Ch            | 是   | EM1    | 定时器 2 比较中断           |
| T2UFINT        | 22  | 0006h           | 1.2  | 002Dh            | 是   | EM1    | 定时器 2 下溢中断           |
| T2OFINT        | 23  |                 | 1.3  | 002Eh            | 是   | EM1    | 定时器 2 溢出中断           |
| CAP1INT        | 24  | INT4<br>- 0008h | 1.4  | 0033h            | 是   | EM1    | 捕获 1 中断              |
| CAP2INT        | 25  |                 | 1.5  | 0034h            | 是   | EM1    | 捕获 2 中断              |
| CAP3INT        | 26  |                 | 1.6  | 0035h            | 是   | EM1    | 捕获 3 中断              |
| SPIINT         | 27  |                 | 1.7  | 0005h            | 是   | SPI    | SPI 中断(低优先级)         |
| RXINT          | 28  | INT5<br>000Ah   | 1.8  | 0006h            | 是   | SCI    | SCI接收中断<br>(低优先级模式)  |
| TXINT          | 29  |                 | 1.9  | 0007h            | 是   | SCI    | SCI 发送中断<br>(低优先级模式) |
| ADCINT         | 30  |                 | 1.12 | 0004h            | 是   | ADC    | ADC 中断 (低优先级模式)      |
| XINT1          | 31  | INT6<br>000Ch   | 1.13 | 0001h            | 是   | 外部中断逻辑 | 外部中断引脚               |
| XINT2          | 32  |                 | 1.14 | 0011h            | 是   | 外部中断逻辑 | (低优先级模式)             |
| 保留的            |     | 000Eh           |      | N/A              | 是   | 中央处理器  | 保留                   |
| 陷阱             | N/A | 0022h           |      | N/A              | N/A | 中央处理器  | TRAP 指令              |
| 伪中断向<br>量      | N/A | N/A             |      | 0000h            | N/A | 中央处理器  | 伪中断向量                |
| INT8-<br>INT16 | N/A | 0010h-<br>0020h |      | N/A              | N/A | 中央处理器  | - 软件中断向量             |
| INT20-<br>IN31 | N/A | 0028h-<br>003Fh |      | N/A              | N/A | 中央处理器  | +A计中的112里<br>        |

# 9.2 CPU 中断寄存器

CPU 中断寄存器包括:中断标志寄存器 (IFR) 和中断屏蔽寄存器 (IMR)

### 1. CPU 中断标志寄存器 IFR—0006h



| 15~6 | 5         | 4         | 3         | 2         | 1         | 0         |
|------|-----------|-----------|-----------|-----------|-----------|-----------|
| 保留位  | INT6 flag | INT5 flag | INT4 flag | INT3 flag | INT2 flag | INT1 flag |
| 0    | RW 0      | RW 0      | RW 0      | RW 0      | RW 0      | RW 0      |

注: R=可读, W=可写, C=清除, 0=复位值, S=只可被置位;

| 位 15~6         | 保留位                                             |
|----------------|-------------------------------------------------|
| <u>M</u> 13.50 | INT6 flag:中断 6 标志位,该位用作连至第 6 级中断 INT6 的所有中断标志;  |
| 位 5            | 0 : 无 INT6 的中断挂起;                               |
| <u>1</u> Ω 3   | 1 : 至少一个 INT6 的中断挂起,对该位写 1 可清除此中断请求状态。          |
|                | INT5 flag:中断 5 标志位,该位用作连至第 5 级中断 INT5 的所有中断标志;  |
| 位 4            | 0 : 无 INT5 的中断挂起;                               |
|                | 1 : 至少一个 INT5 的中断挂起,对该位写 1 可清除此中断请求状态。          |
|                | INT4lag:中断 4 标志位,该位用作连至第 4 级中断 INT4 的所有中断标志;    |
| 位 3            | 0 : 无 INT4 的中断挂起;                               |
|                | 1 : 至少一个 INT4 的中断挂起,对该位写 1 可清除此中断请求状态。          |
|                | INT3 flag: 中断 3 标志位,该位用作连至第 3 级中断 INT3 的所有中断标志; |
| 位 2            | 0 : 无 INT3 的中断挂起;                               |
|                | 1 : 至少一个 INT3 的中断挂起,对该位写 1 可清除此中断请求状态。          |
|                | INT2 flag: 中断 2 标志位,该位用作连至第 2 级中断 INT2 的所有中断标志; |
| 位 1            | 0 : 无 INT2 的中断挂起;                               |
|                | 1 : 至少一个 INT2 的中断悬挂,对该位写 1 可清除此中断请求状态。          |
|                | INT1 flag: 中断 1 标志位,该位用作连至第 1 级中断 INT1 的所有中断标志; |
| 位 0            | 0 : 无 INT1 的中断挂起;                               |
|                | 1 : 至少一个 INT1 的中断挂起,对该位写 1 可清除此中断请求状态。          |

### 2. CPU 中断屏蔽寄存器 IMR—0004h

|   | 15~6                             | 5         | 4         | 3         | 2         | 1         | 0         |  |
|---|----------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|--|
|   | 保留位                              | INT6 mask | INT5 mask | INT4 mask | INT3 mask | INT2 mask | INT1 mask |  |
|   | _0                               | RW_0      | RW_0      | RW_0      | RW_0      | RW_0      | RW_0      |  |
| 洁 | 注:R=可读,W=可写,C=清除,_0=复位值,S=只可被置位; |           |           |           |           |           |           |  |

| 位 15~6 | 保留位                   |
|--------|-----------------------|
|        | INT6 mask: 中断 6 的屏蔽位; |
| 位 5    | 0 : 屏蔽中断 INT6;        |
|        | 1 : 使能中断 INT6;        |
| / 4    | INT5 mask: 中断 5 的屏蔽位; |
| 位 4    | 0 : 屏蔽中断 INT5;        |

|     | The first of the Digital Signal Frocessor | L • T |
|-----|-------------------------------------------|-------|
|     | 1 : 使能中断 INT5;                            |       |
|     | INT4 mask: 中断 4 的屏蔽位;                     |       |
| 位3  | 0 : 屏蔽中断 INT4;                            |       |
|     | 1 : 使能中断 INT4;                            |       |
|     | INT3 mask: 中断 3 的屏蔽位;                     |       |
| 位 2 | 0 : 屏蔽中断 INT3;                            |       |
|     | 1 : 使能中断 INT3;                            |       |
|     | INT2 mask: 中断 2 的屏蔽位;                     |       |
| 位 1 | 0 : 屏蔽中断 INT2;                            |       |
|     | 1 : 使能中断 INT2;                            |       |
|     | INT1 mask: 中断 1 的屏蔽位;                     |       |
| 位 0 | 0 : 屏蔽中断 INT1;                            |       |
|     | 1 : 使能中断 INT1;                            |       |

### 9.3 外设中断控制寄存器

外设中断寄存器包括:

外设中断向量寄存器;

外设中断请求寄存器 0/1/2 (PIRQR0/1/2);

外设中断应答寄存器 0/1/2 (PIACKR0/1/2);

外设中断请求寄存器 0/1/2 和外设中断应答寄存器 0/1/2 都属于外设中断扩展模块。 用来向 CPU 产生 INT1~INT6 中断请求的内部寄存器。这些寄存器用于调试使用,用户 可忽略。

### 1.外设中断向量寄存器 PIVR—701Eh

| 15  | 14  | 13  | 12  | 11  | 10  | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|
| V15 | V14 | V13 | V12 | V11 | V10 | V9 | V8 | V7 | V6 | V5 | V4 | V3 | V2 | V1 | V0 |

 $RW_0$ 

注: R=可读, W=可写, C=清除, 0=复位值, S=只可被置位;

| 位 15~0 | V15~V0:中断向量 V15~V0 位。该寄存器保存了最近一次应答外设中断的地址向量 |
|--------|---------------------------------------------|



### 2.外设中断请求寄存器 PIRQR0—7010h

| 15      | 14      | 13      | 12      | 11      | 10      | 9      | 8      |
|---------|---------|---------|---------|---------|---------|--------|--------|
| IRQ0.15 | IRQ0.14 | IRQ0.13 | IRQ0.12 | IRQ0.11 | IRQ0.10 | IRQ0.9 | 保留     |
| RW_0    | RW_0    | RW_0    | RW_0    | RW_0    | RW_0    | RW_0   | RW_0   |
| 7       | 6       | 5       | 4       | 3       | 2       | 1      | 0      |
| 保留      | IRQ0.6  | IRQ0.5  | IRQ0.4  | IRQ0.3  | IRQ0.2  | IRQ0.1 | IRQ0.0 |
| RW 0    | RW 0   | RW 0   |

注:

1) 写入 1 会发出一个中断请求到 DSP 内核,写入 0 无影响。

2) 有中断请求而未被响应, 称为挂起。

|        | IRQ0.0~IRQ0.15: |
|--------|-----------------|
| 位 15~0 | 0: 未挂起中断请求      |
|        | 1:挂起中断请求        |

### 外设中断请求寄存器 PIRQRO 各位的定义

| 位的位置    | 中断      | 中断描述             | 中断优先级 |
|---------|---------|------------------|-------|
| IRQ0.0  | PDPINTA | 功率驱动保护引脚中断       | INT1  |
| IRQ0.1  | ADCINT  | 高优先级模式 ADC 中断    | INT1  |
| IRQ0.2  | XINT1   | 高优先级模式的外部引脚 1 中断 | INT1  |
| IRQ0.3  | XINT2   | 高优先级模式的外部引脚 2 中断 | INT1  |
| IRQ0.4  | SPIINT  | 高优先级模式的 SPI 中断   | INT1  |
| IRQ0.5  | RXINT   | 高优先级模式的 SCI 接收中断 | INT1  |
| IRQ0.6  | TXINT   | 高优先级模式的 SCI 发送中断 | INT1  |
| 保留      |         |                  |       |
| 保留      |         |                  |       |
| IRQ0.9  | CMP1INT | Compare1 中断      | INT2  |
| IRQ0.10 | CMP2INT | Compare2 中断      | INT2  |
| IRQ0.11 | CMP3INT | Compare3 中断      | INT2  |
| IRQ0.12 | T1PINT  | Timer1 周期中断      | INT2  |
| IRQ0.13 | T1CINTT | Timer1 比较中断      | INT2  |
| IRQ0.14 | T1UPINT | Timer1 下溢中断      | INT2  |
| IRQ0.15 | T10FINT | Timer1 上溢中断      | INT2  |

### 3.外设中断请求寄存器 PIRQR1—7011h

| 15   | 14      | 13      | 12      | 11      | 10      | 9      | 8      |
|------|---------|---------|---------|---------|---------|--------|--------|
| 保留   | IRQ1.14 | IRQ1.13 | IRQ1.12 | IRQ1.11 | IRQ1.10 | IRQ1.9 | IRQ1.8 |
| RW_0 | RW_0    | RW_0    | RW_0    | RW_0    | RW_0    | RW_0   | RW_0   |



V1.4

| 7    | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|------|--------|--------|--------|--------|--------|--------|--------|
| 保留   | IRQ1.6 | IRQ1.5 | IRQ1.4 | IRQ1.3 | IRQ1.2 | IRQ1.1 | IRQ1.0 |
| RW 0 | RW 0   | RW 0   | RW 0   | RW 0   | RW 0   | RW 0   | RW 0   |

注:

1) 写入 1 会发出一个中断请求到 DSP 内核,写入 0 无影响。

2) 有中断请求而未被响应, 称为挂起。

IRQ1.0~IRQ1.15: 0: 未挂起中断请求 位 15~0

1:挂起中断请求

## 外设中断请求寄存器 PIRQR1 各位的定义

| 位的位置    | 中断      | 中断描述             | 中断优先级 |
|---------|---------|------------------|-------|
| IRQ1.0  | T2PINT  | Timer2 周期中断      | INT3  |
| IRQ1.1  | T2CINT  | Timer2 比较中断      | INT3  |
| IRQ1.2  | T2UFINT | Timer2 下溢中断      | INT3  |
| IRQ1.3  | T2OFINT | Timer2 上溢中断      | INT3  |
| IRQ1.4  | CAP1INT | Capture1 中断      | INT4  |
| IRQ1.5  | CAP2INT | Captuer2 中断      | INT4  |
| IRQ1.6  | CAP3INT | Capture3 中断      | INT4  |
| IRQ1.7  | SPIINT  | 低优先级模式的 SPI 中断   | INT5  |
| IRQ1.8  | RXINT   | 低优先级模式的 SCI 接收中断 | INT5  |
| IRQ1.9  | TXINT   | 低优先级模式的 SCI 发送中断 | INT5  |
| 保留      |         |                  |       |
| 保留      |         |                  |       |
| IRQ1.12 | ADCINT  | 低优先级模式的 ADC 中断   | INT6  |
| IRQ1.13 | XINT1   | 低优先级模式的外部引脚 1 中断 | INT6  |
| IRQ1.14 | XINT2   | 低优先级模式的外部引脚 2 中断 | INT6  |
| 保留      |         |                  |       |

#### 4.外设中断请求寄存器 PIRQR2—7012h

| 15   | 14   | 13   | 12   | 11   | 10   | 9    | 8    |
|------|------|------|------|------|------|------|------|
| 保留   |
| RW_0 |
|      |      |      |      |      |      |      |      |
| 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
| 保留   |
| RW_0 | RW 0 |

注:

1) 写入 1 会发出一个中断请求到 DSP 内核,写入 0 无影响。

2) 有中断请求而未被响应, 称为挂起。



V1.4

IRQ2.0~IRQ2.15:

位 15~0

0 : 未挂起的中断请求 1 : 挂起中断请求

## 5.外设中断应答寄存器 PIACKR0—7014h

|   | 15      | 14      | 13      | 12      | 11      | 10      | 9      | 8      |
|---|---------|---------|---------|---------|---------|---------|--------|--------|
| I | IAK0.15 | IAK0.14 | IAK0.13 | IAK0.12 | IAK0.11 | IAK0.10 | IAK0.9 | 保留     |
|   | RW_0    | RW_0    | RW_0    | RW_0    | RW_0    | RW_0    | RW_0   | RW_0   |
|   |         |         |         |         |         |         |        |        |
|   | 7       | 6       | 5       | 4       | 3       | 2       | 1      | 0      |
|   | 保留      | IAK0.6  | IAK0.5  | IAK0.4  | IAK0.3  | IAK0.2  | IAK0.1 | IAK0.0 |
|   | RW_0    | RW_0    | RW_0    | RW_0    | RW_0    | RW_0    | RW_0   | RW_0   |

| 柼 15~0         | IAK0.0~IAK0.15:            |
|----------------|----------------------------|
| <u>  15.40</u> | 外设中断应答位。写 1 到对应的中断应答位可以清零。 |

注:对该寄存器写 1 插入中断应答并不更新 PIVR 寄存器的内容,读此寄存器返回值是 0。

## 外设中断应答寄存器 PIACKRO 各位的定义

| 位的位置    | 中断      | 中断描述             | 中断优先级 |
|---------|---------|------------------|-------|
| IAK0.0  | PDPINTA | 功率驱动保护引脚中断       | INT1  |
| IAK0.1  | ADCINT  | 高优先级模式 ADC 中断    | INT1  |
| IAK0.2  | XINT1   | 高优先级模式的外部引脚 1 中断 | INT1  |
| IAK0.3  | XINT2   | 高优先级模式的外部引脚 2 中断 | INT1  |
| IAK0.4  | SPIINT  | 高优先级模式的 SPI 中断   | INT1  |
| IAK0.5  | RXINT   | 高优先级模式的 SCI 接收中断 | INT1  |
| IAK0.6  | TXINT   | 高优先级模式的 SCI 发送中断 | INT1  |
| 保留      |         |                  |       |
| 保留      |         |                  |       |
| IAK0.9  | CMP1INT | Compare1 中断      | INT2  |
| IAK0.10 | CMP2INT | Compare2 中断      | INT2  |
| IAK0.11 | CMP3INT | Compare3 中断      | INT2  |
| IAK0.12 | T1PINT  | Timer1 周期中断      | INT2  |
| IAK0.13 | T1CINTT | Timer1 比较中断      | INT2  |
| IAK0.14 | T1UPINT | Timer1 下溢中断      | INT2  |
| IAK0.15 | T10FINT | Timer1 上溢中断      | INT2  |



## 6.外设中断应答寄存器 PIACKR1—7015h

|   | 15   | 14      | 13      | 12      | 11      | 10      | 9      | 8      |
|---|------|---------|---------|---------|---------|---------|--------|--------|
|   | 保留   | IAK1.14 | IAK1.13 | IAK1.12 | IAK1.11 | IAK1.10 | IAK1.9 | IAK1.8 |
| • | RW_0 | RW_0    | RW_0    | RW_0    | RW_0    | RW_0    | RW_0   | RW_0   |
|   |      |         |         |         |         |         |        |        |
|   | 7    | 6       | 5       | 4       | 3       | 2       | 1      | 0      |
|   | 保留   | IAK1.6  | IAK1.5  | IAK1.4  | IAK1.3  | IAK1.2  | IAK1.1 | IAK1.0 |
|   | RW 0 | RW 0    | RW 0    | RW 0    | RW 0    | RW 0    | RW 0   | RW 0   |

IAK1.0~IAK1.15: 位 15~0 外设中断应答位。写1到对应的中断应答位可以清除此位。

注:对该寄存器写 1 插入中断应答并不更新 PIVR 寄存器的内容,读此寄存器返回值是 0。

# 外设中断应答寄存器 PIACKR1 各位的定义

| 位的位置    | 中断      | 中断描述             | 中断优先级 |
|---------|---------|------------------|-------|
| IAK1.0  | T2PINT  | Timer2 周期中断      | INT3  |
| IAK1.1  | T2CINT  | Timer2 比较中断      | INT3  |
| IAK1.2  | T2UFINT | Timer2 下溢中断      | INT3  |
| IAK1.3  | T2OFINT | Timer2 上溢中断      | INT3  |
| IAK1.4  | CAP1INT | Capture1 中断      | INT4  |
| IAK1.5  | CAP2INT | Captuer2 中断      | INT4  |
| IAK1.6  | CAP3INT | Capture3 中断      | INT4  |
| IAK1.7  | SPIINT  | 低优先级模式的 SPI 中断   | INT5  |
| IAK1.8  | RXINT   | 低优先级模式的 SCI 接收中断 | INT5  |
| IAK1.9  | TXINT   | 低优先级模式的 SCI 发送中断 | INT5  |
| 保留      |         |                  |       |
| 保留      |         |                  |       |
| IAK1.12 | ADCINT  | 低优先级模式的 ADC 中断   | INT6  |
| IAK1.13 | XINT1   | 低优先级模式的外部引脚 1 中断 | INT6  |
| IAK1.14 | XINT2   | 低优先级模式的外部引脚 2 中断 | INT6  |
| 保留      |         |                  |       |

#### 7.外设中断应答寄存器 PIACKR2—7016h

| 15   | 14   | 13   | 12   | 11   | 10   | 9    | 8    |
|------|------|------|------|------|------|------|------|
| 保留   |
| RW_0 |
|      |      |      |      |      |      |      |      |
| 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
| 保留   |
| RW_0 |



| ☆ 15~0 | IAK2.0~IAK2.15:              |
|--------|------------------------------|
|        | 外设中断应答位。写 1 到对应的中断应答位可以清除此位。 |

注:对该寄存器写 1 插入中断应答并不更新 PIVR 寄存器的内容,读此寄存器返回值是 0。

# 9.4 外设中断控制寄存器

该系列器件包含两个外部中断控制寄存器 XINT1CR 和 XINT2CR,用于控制和监控 XINT1 和 XINT2 的引脚状态。

#### 1.外部中断寄存器 XINT1CR—7070h

| 15         | 14~3 | 2              | 1              | 0            |
|------------|------|----------------|----------------|--------------|
| XINT1 flag | 保留位  | XINT1 polarity | XINT1 priority | XINT1 enable |
| RC_0       | R_0  | RW_0           | RW-0           | RW_0         |

注: R=可读, W=可写, C=清除, \_0=复位值, S=只可被置位;

| 位 15   | XINT1 flag:该位指示在 XINT1 引脚上是否检测到一个所选的跳变。无论外部中断 1 是否被使能,该位都可置位。当相应的中断被应答,该位被自动清 0。通过软件向该位写 1 (写 0 无效)或者器件复位时,该位也被清 0。 |
|--------|---------------------------------------------------------------------------------------------------------------------|
|        | 0 : 未检测到跳变;                                                                                                         |
|        | 1 : 检测到跳变;                                                                                                          |
| 位 14~3 | 保留位                                                                                                                 |
|        | XINT1 polarity; XINT1 极性,该位决定中断触发来自上升沿还是下降沿;                                                                        |
| 位 2    | 0 : 在下降沿产生中断 (由高到低跳变) ;                                                                                             |
|        | 1 : 在上升沿产生中断(由低到高跳变);                                                                                               |
|        | XINT1 priority:XINT1 优先级,该读/写位决定哪一个中断优先级被请求,CPU 的优先                                                                 |
|        | 级层次和相应的高低优先级已经被编码到外设中断扩展寄存器中,可查阅表 9-1 中断源优                                                                          |
| 位 1    | 先级和向量表;                                                                                                             |
|        | 0 : 高优先级;                                                                                                           |
|        | 1 : 低优先级;                                                                                                           |
|        | XINT1 enable:XINT1 使能位,该读写位使能或禁止外部中断 XINT1;                                                                         |
| 位 0    | 0 : 屏蔽中断;                                                                                                           |
|        | 1 : 使能中断;                                                                                                           |

#### 2.外部中断寄存器 XINT2CR—7071h

| 15         | 14~3 | 2              | 1              | 0            |  |
|------------|------|----------------|----------------|--------------|--|
| XINT2 flag | 保留位  | XINT2 polarity | XINT2 priority | XINT2 enable |  |



V1.4



RC\_0

R\_0

RW\_0

RW-0

RW\_0

注: R=可读, W=可写, C=清除, \_0=复位值, S=只可被置位;

| 位 15   | XINT2flag:该位指示在 XINT2 引脚上是否检测到一个所选的跳变。无论外部中断 2 是否被使能,该位都可置位。当相应的中断被应答,该位被自动清 0。通过软件向该位写 1(写 0 无效)或者器件复位时,该位也被清 0。 0 : 未检测到跳变; 1 ; 检测到跳变; |
|--------|------------------------------------------------------------------------------------------------------------------------------------------|
| 位 14~3 | 保留位                                                                                                                                      |
| 位 2    | XINT2 polarity; XINT2 极性,该位决定中断是上升沿产生还是下降沿产生; 0 ; 在下降沿产生中断 (由高到低跳变)产生中断;                                                                 |
| 111 2  | 1 ; 在上升沿产生中断(由低到高跳变)产生中断;                                                                                                                |
| 位 1    | XINT2 priority: XINT2 优先级,该读/写位决定哪一个中断优先级被请求,CPU 的优先级<br>层次和相应的高低优先级已经被编码到外设中断扩展寄存器中,可参加表 9-1 中断源优先级<br>和向量表;<br>0 ; 高优先级;<br>1 ; 低优先级;  |
| 位 0    | XINT2 enable: XINT2 使能位,该读写位使能或禁止外部中断 XINT2;         0 ; 屏蔽中断;         1 ; 使能中断;                                                         |



# 10 看门狗

## 10.1 看门狗模块结构框图

该系列器件集成片内看门狗(Watch Dog)定时器模块。如果器件运行期间没有定 期通过软件写入正确的密钥来监视软、硬件的操作,该模块生成一个系统复位信号。看 门狗定时器独立于 CPU 工作,无需 CPU 初始化。当发生系统复位时,看门狗定时器默 认设置为最高速率(看门狗时钟信号配置为 CLKOUT / 512)。 器件退出复位态, CPU 开始执行代码,看门狗开始递增计数。为了避免器件上电后触发看门狗超时复位,看门 狗的设置应该在上电复位后尽快完成。有关看门狗模块功能结构如图 10.1 所示。看门狗 功能模块主要包括以下部分:

- 看门狗定时器
- 7 种不同看门狗溢出速率
- 一个密钥寄存器(WDKEY),写入正确值清除看门狗计数器,写入错误值触发 系统复位
- 检测对应的控制位, 当写入一个错误值到 WDCR 寄存器, 将触发系统复位
- 一旦系统复位解除,看门狗计数器自动激活
- 三个看门狗控制寄存器。

注: 此模块中的所有寄存器都是8位寄存器,当一个寄存器被访问时,所述寄存器的数 据在低字节,高位字节被读为零。对高位字节写入无效。



表 10.1 列出了不同的看门狗溢出速率配置, 当 SCSR2 寄存器的第 5 位 (SCSR2.5) 为 1 时, WDCR 寄存器的第 6 位 (WDCR.6) 写 "1" 可以禁用看门狗。如果 SCSR2.5 为 0,看门狗将不会被禁用。 SCSR2.5 相当于器件的 WDDIS 引脚。

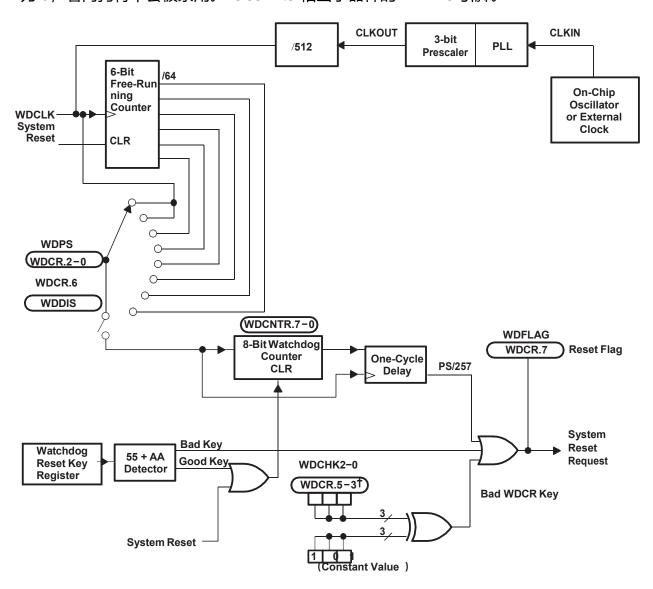



图 10.1 看门狗功能框图

# 10.2 看门狗控制寄存器

#### 1. 看门狗计数寄存器 WDCNTR—7023h

8 位看门狗计数寄存器存放看门狗当前的计数值,寄存器的 D7~D0 位。WDCNTR 是一个只读寄存器,复位后为 0,对寄存器写入无效。



# 2. 看门狗密钥寄存器 WDKEY—7025h

顺序写入 55h+AAh (复位关键字) 到 WDKEY 时,将复位看门狗计数器的值,其它 写入值的组合或除 55h、AAh 之外写入值都不能清除 WDCNTR;

8 位 WDKEY 是一个可读写寄存器,复位后为 0。读取该寄存器将返回 WDCR 中内 容。

## 3. 看门狗控制寄存器 WDCR—7029h

8位 WDCR 用作存放看门狗配置的控制位。

| 7      | 6     | 5      | 4      | 3      | 2     | 1     | 0     |
|--------|-------|--------|--------|--------|-------|-------|-------|
| WDFLAG | WDDIS | WDCHK2 | WDCHK1 | WDCHK0 | WDPS2 | WDPS1 | WDPS0 |
| RC_x   | RWC_0 | RW_0   | RW_0   | RW_0   | RW_0  | RW_0  | RW_0  |

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

|           | WDFLAG:看门狗标志位。该位用作判断看门狗定时器是否产生一个看门狗复位。看门狗产         |
|-----------|----------------------------------------------------|
|           | 生的复位事件时此位置 1。                                      |
| 位 7       | 0:表明上次清除该位后,WD 定时器没有产生复位;                          |
|           | 1:表明上次清除该位后,WD 定时器已经产生了复位;                         |
|           | WDDIS;禁止看门狗位。仅当 SCSR2 中的 WDOVERIDE 位为 1 时,向该位写入有效; |
| 位 6       | 0; 使能看门狗;                                          |
|           | 1;禁止看门狗。                                           |
| 0 - 0 -   | WDCHK2~ WDCHK0:看门狗检查位。必须向此三位写 101h,系统才继续正常运行。否则    |
| 位 5 ~ 位 3 | 将触发一个系统复位。读这三位返回 000h;                             |
|           | WDPS1~WDPS0:看门狗预定标因子选择位。这三位选择产生用于WD计数器CLK的计数       |
| 位 2 ~ 位 0 | 溢出分频 (表 9-1 列出了 WD 溢出时间选择,WD 计数器在溢出前计数 257 个时钟,给定最 |
|           | 小溢出时间。)                                            |



# 进版电子 Advancechip ADM16F03A1 Digital Signal Processor

# 表 10. 1 WD 溢出时间选择

| ,     | WD 频选择 BITS | 5     |          | 看门狗时钟速率 f  | 最小溢出时间         |  |
|-------|-------------|-------|----------|------------|----------------|--|
| WDPS2 | WDPS1       | WDPS0 | WDCLK 分频 | 频率 (Hz)    | 时间 (s)         |  |
| 0     | 0           | х     | 1        | WDCLK / 1  | (256*1)/WDCLK  |  |
| 0     | 1           | 0     | 2        | WDCLK / 2  | (256*2)/WDCLK  |  |
| 0     | 1           | 1     | 4        | WDCLK / 4  | (256*4)/WDCLK  |  |
| 1     | 0           | 0     | 8        | WDCLK / 8  | (256*8)/WDCLK  |  |
| 1     | 0           | 1     | 16       | WDCLK / 16 | (256*16)/WDCLK |  |
| 1     | 1           | 0     | 32       | WDCLK / 32 | (256*32)/WDCLK |  |
| 1     | 1           | 1     | 64       | WDCLK / 64 | (256*64)/WDCLK |  |



# 11 硬件加速单元

# 11.1 硬件加速单元功能介绍

硬件加速单元的功能特性描述如下:

(1) 开平方根运算

输入数据为 32bit 的无符号整数,运算结果为 16bit 无符号整数; 硬件运算花销 17 个周期;

(2) 除法运算

被除数和除数皆为 32bit 有符号整数;

实现有符号的整数除法,保留余数,商和余数皆为 32bit 有符号整数;

(3) 乘法移位运算

实现 32bit 有符号整数乘法运算;

硬件运算花销33个周期;

运算结果在无移位操作时为 64bit 的乘法运算结果; 在有移位操作时, 运算结果保留 移位后的低 32bit 数据;

硬件运算花销 17 个周期

(4) park 变换运算

输入变量为 $\alpha$ ,  $\beta$ ,  $\theta$ 三个 16bit 的有符号变量, 输出为 d、q 两个 16bit 有符号数据; 计算公式:

$$d = \cos(\theta) * \alpha + \sin(\theta) * \beta$$

$$q=-\sin (\theta) * \alpha + \cos (\theta) * \beta$$

硬件运算花销74个周期;

(5) 反正切运算



坐标 (x, y) 输入为 16bit 的有符号数据;

坐标原点偏移可调;

坐标预乘系数可调;

输出角度支持两种模式: Q 模式和 N 模式;

硬件运算花销 15 个周期;

- (6) CPU 采用轮询模式读取 FOC 硬件加速单元运算结果;
- (7) 运算单元集成结果溢出检测、运算中断错误检测等功能;
- (8) 各功能模块皆可软复位。

## 11.2 硬件加速单元各模块详细说明

#### 11.2.1 开平方根模块

#### 1. 开平方根模块使用说明

使用 sqrt 运算开启方法是,在使能 sqrt 模块之后,CPU 再更新开方运算输入的 32bit 数据使能运算。

#### 2. 开平方根模块寄存器

(1) 开方运算的输入低 16bit 数据寄存器 r sqrt dl—7512h

16~0

r\_sqrt\_dl

WR CAh

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

位 16~位0

r\_sqrt\_dl: 开方运算的输入低 16bit 数据寄存器,用来保存开平方模块 32 位输入数据的低 16 位输入;

#### (2) 开方运算的输入高 16bit 数据寄存器 r sqrt dh—7513h

# 进芯电子 Advancechip ADM16F03A1 Digital Signal Processor

V1.4

16~0

 $r_sqrt_dh$ 

 $WR_0$ 

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

| 位 16~位 0 | r_sqrt_dh: 开方运算的输入高 16bit 数据寄存器,用来保存开平方模块 32 位输入数据的高 16 位输 |
|----------|------------------------------------------------------------|
| <u> </u> | λ;                                                         |

## (3) 开方运算控制寄存器 r\_sqrt\_ctrl—7514h

| 15~3 | 2          | 1           | 0        |
|------|------------|-------------|----------|
| 保留   | soft reset | sqrt_cal_en | r_st_clr |
| WR 0 | WR 1       | WR 1        | WR 0     |

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

| 位 15~位 3 | 保留                                            |
|----------|-----------------------------------------------|
| 位 2      | soft reset:开方模块复位信号,低电平有效(写入 0 复位);           |
|          | Sqrt_cal_en: 开方运算使能位;                         |
| 位 1      | 0: 禁止开方运算模块                                   |
|          | 1: 使能开方运算模块                                   |
| 位 0      | r_st_clr:状态寄存器 r_sqrt_st 清除信号,高电平有效(写入 1 清除); |

#### (4) 开方模块状态寄存器 r\_sqrt\_s—7515h

| 15~4 | 3          | 2           | 1         | 0          |
|------|------------|-------------|-----------|------------|
| 保留位  | r_sqrt_rdy | r_sqrt_busy | r_sqrt_of | r_sqrt_err |
| R_0  | R_0        | R_0         | R_0       | R_0        |

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

| 位 15~4         | 保留                                 |
|----------------|------------------------------------|
|                | r_sqrt_rdy:运算结束并等待 CPU 获取运算结果的标志位; |
| 位 3            | 0: 标志被复位                           |
|                | 1: 标志被置位                           |
| / <del>-</del> | r_sqrt_busy: 运算处于忙状态的标志位;          |
| 位 2            | 0: 标志被复位                           |



|     | 1: 标志被置位              |
|-----|-----------------------|
|     | r_sqrt_of:运算结果溢出标志位;  |
| 位 1 | 0: 标志被复位              |
|     | 1: 标志被置位              |
|     | r_sqrt_err:运算中断错误标志位; |
| 位 0 | 0: 标志被复位              |
|     | 1: 标志被置位              |

#### (5) 开方运算结果寄存器 r sqrt q—7516h

16~0

r\_sqrt\_q

 $R_0$ 

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

#### 11.2.2 除法器模块

## 1.除法器模块使用说明

除法器在开启运算方式上分为手动开启运算和自动开启运算两种方式,由寄存器 div ctrl 控制。

当 div\_ctrl[2]设置为 1,则为手动开启模式,此时,只要将 div\_ctrl[1]先设置为 1, 再设置为 0,则立即开启除法运算,

当 div\_ctrl[2]设置为 0,则为自动开启模式,此时只要将被除数和除数设置完成,则自动开启除法运算。

#### 2. 除法器模块寄存器列表

#### (1) 被除数低 16bit 数据寄存器 r\_div\_al—7508h

16~0

r div al



WR\_00Cah

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

位 16~位 0 r\_div\_al:被除数低 16bit 数据寄存器,用作保存除法器模块 32 位被除数的低 16 位数据;

#### (2) 被除数高 16bit 数据寄存器 r div ah—7509h

16~0

r\_div\_ah

WR 0900h

注:R=可读,W=可写,C=清除,\_0=复位值,\_X=复位值不确定,S=只可被置位;

位 16~位 0 r\_div\_ah:被除数高 16bit 数据寄存器,用作保存除法器模块 32 位被除数的高 16 位数据;

#### (3) 除数低 16bit 数据寄存器 r div bl-750Ah

16~0

r\_div\_bl

WR\_357h

注: R=可读, W=可写, C=清除, 0=复位值, X=复位值不确定, S=只可被置位;

位 16~位 0 r div bl: 除数低 16bit 数据寄存器,用作保存 32 位除数的低 16 位数据;

#### (4) 除数高 16bit 数据寄存器 r div bh—750Bh

16~0

r\_div\_bh

WR 0

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

位 16~位 0 r\_div\_bh: 除数高 16bit 数据寄存器,用作保存除法器模块 32 位除数的高 16 位数据;

## (5) 除法控制寄存器 r\_div\_ctrl—750Ch

| 15~5 | 4          | 3        | 2       | 1          | 0        |
|------|------------|----------|---------|------------|----------|
| 保留   | soft reset | r_div_en | r_div_m | r_hand_div | r_st_clr |
| WR_0 | WR_1       | WR_1     | WR_0    | WR_0       | WR_0     |

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;



| 位 15~位 5                       | 保留                               |  |
|--------------------------------|----------------------------------|--|
| 位 4                            | 位 4 soft reset: 除法器模块复位信号, 0 有效; |  |
| 位 3 r_div_en: 除法器模块使能信号, 1 有效; |                                  |  |
|                                | r_div_m:运算开启模式选择位;               |  |
| 位 2                            | 0: 自动模式                          |  |
|                                | 1: 手动模式                          |  |
| <i>l</i> <del></del>           | r_hand_div: 手动开启运算控制位;           |  |
| 位 1                            | 先写入 1,再写入 0 将开启一次运算              |  |
|                                | r_st_clr: 状态寄存器清除使能位;            |  |
| 位 0                            | 0: 状态寄存器保持                       |  |
|                                | 1: 状态寄存器清除为 0                    |  |

## (6) 除法器模块状态寄存器 r\_div\_st—750Dh

| 15~4 | 3         | 2          | 1        | 0         |
|------|-----------|------------|----------|-----------|
| 保留   | r_div_rdy | r_div_busy | r_div_of | r_div_err |
| R_0  | R_0       | R_0        | R_0      | R_0       |

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

| 位 15~位4                          | 位 4 保留                     |  |
|----------------------------------|----------------------------|--|
| 位 3 r_div_rdy:运算并等待 CPU 获取结果的标志; |                            |  |
| 位 2                              | r_div_busy:运算处于忙状态的标志;     |  |
| 位 1                              | r_div_of: 运算结果溢出标志;        |  |
| 位 0                              | <br>  r_div_err: 运算中断错误标志; |  |

# (7) 除法运算商的低 16bit 数据寄存器 r\_div\_ql—750Eh

15~0 r\_div\_ql

R 0

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

| 位 15~位 0 | r_div_ql: 除法运算商的低 16bit 数据寄存器,用作保存除法运算 32 位商的低 16 位数据; |
|----------|--------------------------------------------------------|
|----------|--------------------------------------------------------|

## (8) 除法运算商的高 16bit 数据寄存器 r\_div\_qh—750Fh

V1.4

15~0

r\_div\_qh

R 0

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

位 15~位0

r\_div\_qh: 除法运算商的高 16bit 数据寄存器,用作保存除法运算 32 位商的高 16 位数据;

## (9) 除法运算余数的低 16bit 数据寄存器 r\_div\_rl—7510h

15~0

r\_div rl

R 0

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

位 15~位0

r div rl: 除法运算余数低 16bit 数据寄存器,用作保存除法器模块 32 位余数的低 16 位数据;

#### (10) 除法运算余数的高 16bit 数据寄存器 r div rh—7511h

15~0

r\_div\_rh

R 0

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

位 15~位0

r\_div\_rh: 除法运算余数高 16bit 数据寄存器,用作保存除法器模块 32 位余数的高 16 位数据;

#### 11.2.3 Park 运算模块

## 1.park 模块使用说明

park 变换需要输入三个 16bit 位宽的数据变量,当 CPU 更新这三个变量的值以后,自动开启 park 变换。

# 2.park 模块寄存器列表

#### (1) park 变换 alph 变量输入数据寄存器 r park alph—7517h

15~0

r\_park\_alph



 $WR_CAh$ 

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

位 15~位 0 r\_park\_alph: park 变换 alph 变量输入数据寄存器,用作保存 park 模块输入数据 alph 的值;

#### (2) park 变换 beta 变量输入数据寄存器 r park beta - 7518h

15~0

r\_park\_beta

WR CAh

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

位 15~位 0 r park beta: park 变换 beta 变量输入数据寄存器,用作保存 park 模块输入数据 beta 的值;

## (3) park 变换 theta 变量输入数据寄存器 r\_park\_theta - 7519h

15~0

r\_park\_theta

WR CAh

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

位 15~位 0 r\_park\_theta: park 变换 theta 变量输入数据寄存器,用作保存 park 模块输入数据 theta 的值;

#### (4) park 变换控制寄存器 r\_park\_ctrl—751Ah

15~3 2 1 0

保留 soft reset park\_cal\_en r\_st\_clr

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

| 位 15~位 3 | 保留                             |
|----------|--------------------------------|
| 位 2      | soft reset:复位信号,写 0 有效         |
| 位 1      | park_cal_en:park 运算使能信号,写 1 有效 |
| 位 0      | r_st_clr: 状态寄存器清除信号,写 1 有效     |

#### (5) park 变换状态寄存器 r\_park\_st—751Bh



V1.4

 15~4
 3
 2
 1
 0

 保留
 r\_park\_rdy
 r\_park\_busy
 r\_park\_of
 r\_park\_err

 R\_0
 R\_0
 R\_0
 R\_0

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

| 位 15~位4                               | <b>米留</b>              |  |
|---------------------------------------|------------------------|--|
| 位 3 r_park_rdy: 运算结束并等待 CPU 获取运算结果的标志 |                        |  |
| 位 2                                   | r_park_busy:运算处于忙状态的标志 |  |
| 位 1                                   | r_park_of: 运算结果溢出标志    |  |
| 位 0                                   | r_park_err: 运算错误中断标志   |  |

#### (6) park 变换结果 mtd 数据寄存器 r park mtd—751Ch

15~0

r\_park\_mtd R 0

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

位 15~位 0 r\_park\_mtd: park 变换结果 mtd 数据寄存器,用作保存 park 模块运算结果 mtd 的数据。

#### (7) park 变换结果 mtq 数据寄存器 r park mtq—751Dh

15~0

r\_park\_mtq
R 0

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

位 15~位 0 r\_park\_mtd: park 变换结果 mtq 数据寄存器,用作保存 park 模块运算结果 mtq 的数据。

#### 11.2.4 乘法移位器模块

### 1. 乘法移位器模块使用说明

#### (1) 乘法移位器运算的开启方式

乘法运算需要 CPU 写入两个 32bit 的运算变量,采取了两种运算开启的方式,操作如下:

CPU 更新两个 32bit 的运算变量后自动开启乘法移位运算;



CPU 通过 r\_multi\_ctrl[1]寄存器控制位,手动开启运算,方法是先将 r\_multi\_ctrl[2]写入 1 使能手动开启模式,之后在需要运算的时候将 r\_multi\_ctrl[1]顺序写入 1 和 0,触发一次运算。

## (2) CPU 读取运算结果结束标志的设计

由于乘法运算结果 multi\_q 具有 64bit, 当存在移位操作的情况下,只需读取 multi\_q[31:0],无移位操作时读取 multi\_q 的 64bit 数据, CPU 读取结束标志 q\_empty 将置 1,表示读取结束。

#### 2. 乘法移位器寄存器列表

#### (1) 乘法运算输入低 16 位数据寄存器 r\_multi\_al—751Eh

15~0

r multi al

RW\_1Cah

注: R=可读, W=可写, C=清除, 0=复位值, X=复位值不确定, S=只可被置位;

位 15~位0

 $r_multi_al$ : 乘法移位运算输入变量  $multi_a$  低 16 位数据寄存器,用作保存输入变量  $multi_a$  的低 16 位数据

#### (2) 乘法移位运算输入变量 multi a 高 16 位数据寄存器 r multi ah—751Fh

15~0

r\_multi\_ah

RW\_CAh

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

位 15~位0

r\_multi\_ah: 乘法移位运算输入变量 multi\_a 高 16 位数据寄存器,用作保存输入变量 multi\_a 的高 16 位数据

#### (3) 乘法移位运算输入变量 multi b 低 16 位数据寄存器 r multi bl—7520h

15~0

r\_multi\_bl

RW\_1CAh



注: R=可读, W=可写, C=清除, 0=复位值, X=复位值不确定, S=只可被置位;

位 15~位 0

r\_multi\_bl: 乘法移位运算输入变量 multi\_b 低 16 位数据寄存器,用作保存输入变量 multi\_b 的低 16 位数据

## (4) 乘法移位运算输入变量 multi\_b 高 16 位数据寄存器 r\_multi\_bh—7521h

15~0

r multi bh

RW\_CAh

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

位 15~位0

RW 0

r\_multi\_bh: 乘法移位运算输入变量 multi\_b 高 16 位数据寄存器,用作保存输入变量 multi\_b 的高 16 位数据

## (5) 乘法移位器的移位控制变量寄存器 r multi sf—7522h

15~6 5~0

保留 r\_multi\_sf

 $RW_0$   $RW_0$ 

注: R=可读, W=可写, C=清除, 0=复位值, X=复位值不确定, S=只可被置位;

| 位 15~位6 | 保留                                 |
|---------|------------------------------------|
| 位 5~位0  | r_multi_sf: 乘法移位器的移位控制变量,移位大小 0~32 |

#### (6) 乘法移位器控制寄存器 r\_multi\_ctrl—7523h

RW 1

 15~5
 4
 3
 2
 1
 0

 保留
 soft reset
 r\_multi\_en
 r\_multi\_m
 r\_hand\_multi
 r\_st\_clr

RW 0

RW 0

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

RW 1

 位 15~位 5
 保留

 位 4
 soft reset: 复位信号,写 0 有效

 位 3
 r\_multi\_en: 乘法移位去模块使能信号,写 1 有效

 位 2
 r\_multi\_m: 运算开启模式选择位: 1: 手动模式

RW 0



V1.4

|              | 0: 自动模式                                |
|--------------|----------------------------------------|
| <i>1</i> → 1 | r_hand_multi: 手动开启运算控制位;               |
| 位 1          | 顺序写入 1,0 将开启一次运算                       |
| 位 0          | r_st_clr:状态寄存器 r_multi_st 清除信号,写入 1 清除 |

# (7) 乘法移位器状态寄存器 r\_multi\_st—7524h

| 15~4 | 3           | 2            | 1          | 0           |
|------|-------------|--------------|------------|-------------|
| 保留   | r_multi_rdy | r_multi_busy | r_multi_of | r_multi_err |
| R_0  | R_0         | R_0          | R_0        | R_0         |

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

| 位 15~位4 | 保留                                |
|---------|-----------------------------------|
| 位 3     | r_multi_rdy:运算结束并等待 CPU 获取运算结果的标志 |
| 位 2     | r_multi_busy:运算处于忙状态的标志           |
| 位 1     | r_multi_of:运算结果溢出标志               |
| 位 0     | <br>  r_multi_err: 运算中断错误标志       |

## (8) 乘法移位运算结果 r\_multi\_qll 寄存器—7525h

15~0

| r_multi_qll |  |
|-------------|--|
|             |  |

R 0

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

| 位 15~位 0 | r_multi_qll:乘法移位运算结果 r_multi_qll 寄存器,用作保存运算结果 64 位变量的 0~15 位数据; |
|----------|-----------------------------------------------------------------|

# (9) 乘法移位运算结果 r\_multi\_qlh 寄存器—7526h

15~0

R\_0

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

| ☆ 15~☆ 0 | r_multi_qlh:乘法移位运算结果 r_multi_qlh 寄存器,用作保存运算结果 64 位变量的 16~31 位数 |
|----------|----------------------------------------------------------------|
|          | 据;                                                             |



## (10) 乘法移位运算结果 r\_multi\_qhl 寄存器—7527h

15~0

r multi qhl

R 0

注: R=可读, W=可写, C=清除, 0=复位值, X=复位值不确定, S=只可被置位;

位 15~位0

 $r_multi_qhl$ : 乘法移位运算结果  $r_multi_qhl$  寄存器,用作保存运算结果 64 位变量的 32 ~ 47 位数据;

#### (11) 乘法移位运算结果 r multi qhh 寄存器—7528h

15~0

r\_multi\_qhh

R 0

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

位 15~位0

 $r_multi_qhh$ : 乘法移位运算结果  $r_multi_qhh$  寄存器,用作保存运算结果 64 位变量的 48 ~ 63 位数据;

## 11.2.5 Cordic 模块

#### 1. Cordic 模块使用说明

Cordic 模块在开启运算方式上分为手动开启运算和自动开启运算两种方式,由寄存器 r\_cor\_ctrl 寄存器控制。

当 r\_cor\_ctrl[1]设置为 1,则为手动开启模式,此时,只要将 r\_cor\_ctrl[3]先设置为 1,再设置为 0,则立即开启角度运算。

当 r\_cor\_ctrl[1]设置为 0,则为自动开启模式,此时只要将坐标(X,Y)写入值,则自动开启角度运算。

Cordic 模块支持两种角度表达方式,一种是 N 模式,一种 Q 模式。

- N 模式下: 绝对误差<±0.5°。</li>
- Q模式下:最小绝对误差能达到<±0.0055°。</li>



#### 2.Cordic 模块寄存器列表

#### (1) 坐标 (x, y) 中的 x 输入变量寄存器 r\_cor\_x—7500h

15~0

r\_cor\_x

RW 150h

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

位 15~位 0 r\_cor\_x: 坐标(x, y) 中的 x 输入变量寄存器, 用作保存输入变量 x 的数据;

#### (2) 坐标 (x, y) 中的 y 输入变量寄存器 r\_cor\_y—7501h

15~0

r\_cor\_y

RW\_80h

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

位 15~位 0 r\_cor\_y: 坐标(x, y)中的 y 输入变量寄存器,用作保存输入变量 y 的数据;

#### (3) Cordic 运算结果 (Q&N 模式) 寄存器 r\_agl—7502h

15~0

r\_agl

RW 0

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

位 15~位 0 r\_agl: Cordic 运算结果 (Q&N 模式) r\_agl, 用作保存运算之后得到的角度;

#### (4) cordic 控制寄存器 r\_cor\_ctrl—7504h

15~9 8 7~4 3 2 1 0 保留 soft reset r hand ctrl r pre amp r angle m r cal m r st clr WR\_Ch WR\_0 WR 0 WR 1  $WR_1$ WR 0  $WR_0$ 

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

| 位 15~位 9 | 保留                                             |
|----------|------------------------------------------------|
| 位 8      | soft reset:复位信号,0 有效                           |
| 位7~位4    | r_pre_amp:表示对坐标(x, y)的倍乘2 <sup>r_pre_amp</sup> |

| 位 3 | r_hand_ctrl: 手动模式下的手动开启控制信号,先置1再置0操作即开启一次运算 |
|-----|---------------------------------------------|
|     | r_angle_m:角度模式选择位;                          |
| 位 2 | 1: Q模式                                      |
|     | 0: N 模式                                     |
|     | <br>  r_cal_m:运算开启模式选择位;                    |
| 位 1 | 1: 手动模式                                     |
|     | 0: 自动模式                                     |
| 位 0 | r_st_clr:状态寄存器 r_cor_st 清除信号,写入 1 清除        |

#### (5) cordic 模块状态寄存器 r\_cor\_st—7505h

| 15~4 | 3     | 2      | 1        | 0         |
|------|-------|--------|----------|-----------|
| 保留   | r_rdy | r_busy | r_cor_of | r_cor_err |
| R 0  | R 0   | R 0    | R 0      | R 0       |

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

| 位 15~位4 | 保留                        |  |  |  |  |  |
|---------|---------------------------|--|--|--|--|--|
| 位 3     | rdy:运算结束并等待 CPU 获取运算结果的标志 |  |  |  |  |  |
| 位 2     | r_busy: 运算处于忙状态的标志        |  |  |  |  |  |
| 位 1     | r_cor_of:运算结果溢出标志         |  |  |  |  |  |
| 位 0     | r_cor_err: 运算中断错误标志       |  |  |  |  |  |

## (6) 坐标 (x, y) 的 x 预偏置大小设置寄存器 r\_x\_offset—7506h

15~0

r\_x\_offset

 $RW_0$ 

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

位 15~位 0 r\_x\_offset: 坐标 (x, y) 的 x 预偏置大小设置寄存器,用作设置 x 预偏置大小

## (7) **坐标** (x, y) 的 y 预偏置大小设置寄存器 r\_y\_offset—7507h

15~0

r\_y\_offset

 $RW_0$ 

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;



位 15~位 0 r\_y\_offset: 坐标 (x, y) 的 y 预偏置大小设置寄存器,用作设置 y 预偏置大小



# 12 数字 I/O 口与引脚复用功能

# 12.1 数字 I/O 口与引脚复用功能描述

该系列器件设计集成 17 个通用双向数字 I / O (GPIO) 引脚,其中大部分为外设功能和通用 I / O 复用引脚。这些引脚功能通过 10 个 16 位寄存器控制。这些寄存器分为两种类型:

- 三个输出控制寄存器: MCRA、MCRB、MCRC, 用于配置选择引脚的外设功能或通用 I / O 功能。
- 七个数据和控制寄存器: PADATDIR, PBDATDIR, PCDATDIR, PDDATDIR,
   PEDATDIR, PFDATDIR0, PFDATDIR1 用于控制双向 I/O 引脚数据和输出方向。

## 12.1.1 复用 I/O 引脚描述

通用 I/O 引脚的控制结构如图 12.1 所示, 其中每个引脚都有三类控制位对其定义:

- Mux 控制位,在引脚的主功能(1)和 I/O 功能(0)之间实现选择控制。
- I/O 方向位,如果引脚选择了 I/O 功能(多路复用控制位写入 0),此位选择引脚模式是输入(0)还是输出(1)。
- I/O 数据位,如果引脚选择了 I/O 功能(多路复用控制位写入 0),并且所选方向为输入,则从该位读取数据;如果选择的方向是输出,则将数据写入该位。



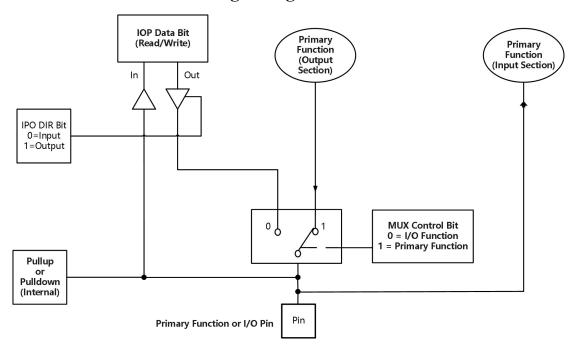



图 12.1 I/O 复用控制框图

# 12.2 数字 I/O 控制寄存器

表12.1列出了数字I/O模块中可用的寄存器,这些寄存器被映射到内存的数据空间。

| 数字 I / O 控制寄存器的地址 | 寄存器       | 名称                  |
|-------------------|-----------|---------------------|
| 7090h             | MCRA      | I / O 多路复用控制寄存器 A   |
| 7092h             | MCRB      | I / O 多路复用控制寄存器 B   |
| 7094h             | MCRC      | I / O 多路复用控制寄存器 C   |
| 7095h             | PEDATDIR  | I / O 端口 E 数据和方向寄存器 |
| 7096h             | PFDATDIR0 | I/O端口F数据和方向寄存器0     |
| 7103h             | PFDATDIR1 | I/O端口F数据和方向寄存器1     |
| 7098h             | PADATDIR  | I / O 端口 A 数据和方向寄存器 |
| 709Ah             | PBDATDIR  | I / O 端口 B 数据和方向寄存器 |
| 709Ch             | PCDATDIR  | I / O 端口 C 数据和方向寄存器 |
| 709Eh             | PDDATDIR  | I / O 端口 D 数据和方向寄存器 |

表12.1 数字I/O模块控制寄存器

# 12.2.1 I/O 端口复用控制寄存器 PORTA, PORTB



# 1. I/O 端口复用输出控制寄存器 MCRA - 7090h

| 15       | 14                                         | 13      | 12      | 11      | 10      | 9      | 8      |  |  |  |
|----------|--------------------------------------------|---------|---------|---------|---------|--------|--------|--|--|--|
| MCRA.15  | MCRA.14                                    | MCRA.13 | MCRA.12 | MCRA.11 | MCRA.10 | MCRA.9 | MCRA.8 |  |  |  |
| RW_0     | RW_0                                       | RW_0    | RW_0    | RW_0    | RW_0    | RW_0   | RW_0   |  |  |  |
|          |                                            |         |         |         |         |        |        |  |  |  |
| 7        | 6                                          | 5       | 4       | 3       | 2       | 1      | 0      |  |  |  |
| MCRA.7   | MCRA.6                                     | MCRA.5  | MCRA.4  | MCRA.3  | MCRA.2  | MCRA.1 | MCRA.0 |  |  |  |
| RW_0     | RW_0                                       | RW_0    | RW_0    | RW_0    | RW_0    | RW_0   | RW_0   |  |  |  |
| 注: R=可读, | 注:R=可读,W=可写,C=清除, 0=复位值, X=复位值不确定,S=只可被置位; |         |         |         |         |        |        |  |  |  |

| /  | 12-66-67-76- | 引脚功能选择          |                 |  |  |  |
|----|--------------|-----------------|-----------------|--|--|--|
| 位  | 位的名称         | 基本功能 (MCRA.n=1) | 基本功能 (MCRA.n=0) |  |  |  |
| 15 | MCRA.15      | 保留              | 保留              |  |  |  |
| 14 | MCRA.14      | 保留              | 保留              |  |  |  |
| 13 | MCRA.13      | 保留              | 保留              |  |  |  |
| 12 | MCRA.12      | 保留              | 保留              |  |  |  |
| 11 | MCRA.11      | PWM6            | IOPB3           |  |  |  |
| 10 | MCRA.10      | PWM5            | IOPB2           |  |  |  |
| 9  | MCRA.9       | PWM4            | IOPB1           |  |  |  |
| 8  | MCRA.8       | PWM3            | IOPB0           |  |  |  |
| 7  | MCRA7        | PWM2            | IOPA7           |  |  |  |
| 6  | MCRA.6       | PWM1            | IOPA6           |  |  |  |
| 5  | MCRA.5       | CAP3            | IOPA5           |  |  |  |
| 4  | MCRA.4       | CAP2/QEP2       | IOPA4           |  |  |  |
| 3  | MCRA.3       | CAP1/QEP1       | IOPA3           |  |  |  |
| 2  | MCRA.2       | XINT1           | IOPA2           |  |  |  |
| 1  | MCRA.1       | SCIRXD          | IOPA1           |  |  |  |
| 0  | MCRA.0       | MCRA.0 SCITXD   |                 |  |  |  |

# 2. I/O 端口 A 数据和方向控制寄存器 PADATDIR - 7098h

| 15    | 14    | 13    | 12    | 11    | 10    | 9     | 8     |
|-------|-------|-------|-------|-------|-------|-------|-------|
| A7DIR | A6DIR | A5DIR | A4DIR | A3DIR | A2DIR | A1DIR | A0DIR |
| RW_0  |



| 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|-------|-------|-------|-------|-------|-------|-------|-------|
| IOPA7 | IOPA6 | IOPA5 | IOPA4 | IOPA3 | IOPA2 | IOPA1 | IOPA0 |
| RW +  |

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, \_+复位后的值与相应引脚状态有关, S=只可被 置位;

|             | AnDIR:              |  |  |  |
|-------------|---------------------|--|--|--|
| 位 15~位 8    | 0: 配置相应引脚为输入方式      |  |  |  |
|             | 1: 配置相应引脚为输出方式      |  |  |  |
|             | 当 AnDIR=0,即引脚为输入方式; |  |  |  |
|             | 0: 读相应引脚的值为低电平      |  |  |  |
| /÷ 7 /÷ 0   | 1: 读相应引脚的值为高电平      |  |  |  |
| │ 位 7 ~ 位 0 | 当 AnDIR=1,即引脚为输出方式; |  |  |  |
|             | 0:设置相应的引脚,使其输出为低电平  |  |  |  |
|             | 1:设置相应的引脚,使其输出为高电平  |  |  |  |

#### 3. I/O 端口 B 数据和方向控制寄存器 PBDATDIR - 709Ah

| _ | 15   | 14   | 13   | 12   | 11    | 10    | 9     | 8     |
|---|------|------|------|------|-------|-------|-------|-------|
|   | 保留   | 保留   | 保留   | 保留   | B3DIR | B2DIR | B1DIR | BODIR |
|   | RW_0 | RW_0 | RW_0 | RW_0 | RW_0  | RW_0  | RW_0  | RW_0  |

| 7  | 6  | 5  | 4  | 3     | 2     | 1     | 0     |
|----|----|----|----|-------|-------|-------|-------|
| 保留 | 保留 | 保留 | 保留 | IOPB3 | IOPB2 | IOPB1 | IOPB0 |

RW\_+ RW\_+ RW\_+ RW\_+ RW\_+ RW\_+

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, \_+复位后的值与相应引脚状态有关, S=只可被 置位;

| 位 15~位 8          | BnDIR:              |
|-------------------|---------------------|
|                   | 0: 配置相应引脚为输入方式      |
|                   | 1: 配置相应引脚为输出方式      |
|                   | 当 BnDIR=0,即引脚为输入方式; |
| <i>1</i> → 7 /→ 0 | 0: 读相应引脚的值为低电平      |
| 位 7 ~ 位 0         | 1: 读相应引脚的值为高电平      |
|                   | 当 BnDIR=1,即引脚为输出方式; |



0:设置相应的引脚,使其输出为低电平

1:设置相应的引脚,使其输出为高电平

# 12.2.2 I/O 端口复用控制寄存器 PORTC, PORTD

#### 1) I/O 端口 C 数据和方向控制寄存器 PCDATDIR - 709Ch

| <br>15 | 14   | 13    | 12    | 11    | 10    | 9    | 8    |
|--------|------|-------|-------|-------|-------|------|------|
| 保留     | 保留   | C5DIR | C4DIR | C3DIR | C2DIR | 保留   | 保留   |
| RW_0   | RW_0 | RW_0  | RW_0  | RW_0  | RW_0  | RW_0 | RW_0 |
| 7      | 6    | 5     | 4     | 3     | 2     | 1    | 0    |
| 保留     | 保留   | IOPC5 | IOPC4 | IOPC3 | IOPC2 | 保留   | 保留   |
| RW_+   | RW_+ | RW_+  | RW_+  | RW_+  | RW_+  | RW_+ | RW_+ |

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, \_+复位后的值与相应引脚状态有关, S=只可被置位;

|                           | CnDIR:              |  |  |  |  |  |
|---------------------------|---------------------|--|--|--|--|--|
| 位 15~位 8                  | 0: 配置相应引脚为输入方式      |  |  |  |  |  |
|                           | 1: 配置相应引脚为输出方式      |  |  |  |  |  |
|                           | 当 CnDIR=0,即引脚为输入方式; |  |  |  |  |  |
|                           | 0: 读相应引脚的值为低电平      |  |  |  |  |  |
| <i>1</i> ÷ 7 <i>1</i> ÷ 0 | 1: 读相应引脚的值为高电平      |  |  |  |  |  |
| 位 7 ~ 位 0                 | 当 CnDIR=1,即引脚为输出方式; |  |  |  |  |  |
|                           | 0:设置相应的引脚,使其输出为低电平  |  |  |  |  |  |
|                           | 1: 设置相应的引脚,使其输出为高电平 |  |  |  |  |  |

#### 2) I/O 端口 D 数据和方向控制寄存器 PDDATDIR - 709Eh

| 15   | 14    | 13    | 12    | 11    | 10   | 9    | 8     |
|------|-------|-------|-------|-------|------|------|-------|
| 保留   | D6DIR | D5DIR | D4DIR | D3DIR | 保留   | 保留   | D0DIR |
| RW_0 | RW_0  | RW_0  | RW_0  | RW_0  | RW_0 | RW_0 | RW_0  |
|      |       |       |       |       |      |      |       |
| 7    | 6     | 5     | 4     | 3     | 2    | 1    | 0     |
| 保留   | IOPD6 | IOPD5 | IOPD4 | IOPD3 | 保留   | 保留   | IOPD0 |
| RW_+ | RW_+  | RW_+  | RW_+  | RW_+  | RW_+ | RW_+ | RW_+  |

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, \_+复位后的值与相应引脚状态有关, S=只可被



置位;

|                  | DnDIR:              |  |  |  |  |  |
|------------------|---------------------|--|--|--|--|--|
| 位 15~位 8         | 0: 配置相应引脚为输入方式      |  |  |  |  |  |
|                  | 1: 配置相应引脚为输出方式      |  |  |  |  |  |
|                  | 当 DnDIR=0,即引脚为输入方式; |  |  |  |  |  |
|                  | 0: 读相应引脚的值为低电平      |  |  |  |  |  |
| <i>12-7-12-0</i> | 1: 读相应引脚的值为高电平      |  |  |  |  |  |
| 位 7~位 0          | 当 DnDIR=1,即引脚为输出方式; |  |  |  |  |  |
|                  | 0:设置相应的引脚,使其输出为低电平  |  |  |  |  |  |
|                  | 1: 设置相应的引脚,使其输出为高电平 |  |  |  |  |  |

# 12.2.3 I/O 端口复用控制寄存器 PORTE, PORTF

#### 1) I/O 端口 E 数据和方向控制寄存器 PEDATDIR - 7095h

注: GPIOE5~GPIOE7 配置输出端口无效

| 15    | 14    | 13    | 12    | 11   | 10   | 9     | 8    |
|-------|-------|-------|-------|------|------|-------|------|
| 保留    | 保留    | 保留    | E4DIR | 保留   | 保留   | E1DIR | 保留   |
| RW_0  | RW_0  | RW_0  | RW_0  | RW_0 | RW_0 | RW_0  | RW_0 |
|       |       |       |       |      |      |       |      |
| 7     | 6     | 5     | 4     | 3    | 2    | 1     | 0    |
| IOPE7 | IOPE6 | IOPE5 | IOPE4 | 保留   | 保留   | IOPE1 | 保留   |
| RW +  |       |       |       | RW + | RW + | RW +  | RW + |

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, \_+复位后的值与相应引脚状态有关, S=只可被 置位;

|           | EnDIR:              |  |  |  |  |  |
|-----------|---------------------|--|--|--|--|--|
| 位 15~位 8  | 0: 配置相应引脚为输入方式      |  |  |  |  |  |
|           | 1: 配置相应引脚为输出方式      |  |  |  |  |  |
|           | 当 EnDIR=0,即引脚为输入方式; |  |  |  |  |  |
|           | 0: 读相应引脚的值为低电平      |  |  |  |  |  |
| /÷ 7 /÷ 0 | 1: 读相应引脚的值为高电平      |  |  |  |  |  |
| 位 7 ~ 位 0 | 当 EnDIR=1,即引脚为输出方式; |  |  |  |  |  |
|           | 0:设置相应的引脚,使其输出为低电平  |  |  |  |  |  |
|           | 1: 设置相应的引脚,使其输出为高电平 |  |  |  |  |  |



# 2) I/O 端口 F 数据和方向控制寄存器 PFDATDIR1 - 7103h

OP1N, OP1P, B2\_OP2P, B3\_OP2N, B4\_OP3P, B5\_OP3N, B6\_OP4P, B7\_OP4N 仅支持输入功能, 且需要配置寄存器 PFDATDIR1。

| 15        | 14        | 13        | 12        | . 11      | 10        | 9         | 8         |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| СОМРН     | COMPL     | PDPA      | 保留        | 留 保留      | 保留        | 保留        | 保留        |
| RW_0      | RW_0      | RW_0      | RW_       | _0 RW_0   | RW_0      | RW_0      | RW_0      |
| 7         | 6         | 5         | 4         | 3         | 2         | 1         | 0         |
| REG_INPUT |
| _CT7      | _СТ6      | _CT5      | _CT4      | _CT3      | _CT2      | _CT1      | _СТ0      |
| RW_+      |

|          | COMPH: 比较器 COMPH 状态位;          |  |  |  |  |
|----------|--------------------------------|--|--|--|--|
| 位 15     | 1: A0_COMPO 输入电压超过上限电压;        |  |  |  |  |
|          | 0: A0_COMP0 输入电压未超过上限电压;       |  |  |  |  |
|          | COMPL: 比较器 COMPH 状态位;          |  |  |  |  |
| 位 14     | 1: A0_COMP0 输入电压低于下限电压;        |  |  |  |  |
|          | 0: A0_COMPO 输入电压未低于下限电压;       |  |  |  |  |
|          | PDPA: 为 PDPINTA 输入源控制切换位;      |  |  |  |  |
| 位 13     | 1:配置 PDPINTA 输入源使用 COMPH/COMPL |  |  |  |  |
|          | 0: 配置 PDPINTA 输入源使用 B7_OP4N    |  |  |  |  |
| 位 12     | 保留:                            |  |  |  |  |
| 位 11     | 保留:                            |  |  |  |  |
| 位 10~位 9 | 保留:                            |  |  |  |  |
| 位 8      | 保留:                            |  |  |  |  |
|          | REG_INPUT_CT7: 复用 IOPE5 输入使能位; |  |  |  |  |
| 位 7      | 0: 配置端口为 ADC 输入 B7             |  |  |  |  |
|          | 1:配置端口为数字 IO 输入端口 IOPE5        |  |  |  |  |
|          | REG_INPUT_CT6: 复用 IOPE6 输入使能位; |  |  |  |  |
| 位 6      | 0: 配置端口为 ADC 输入 B6             |  |  |  |  |
|          | 1:配置端口为数字 IO 输入端口 IOPE6        |  |  |  |  |
|          | REG_INPUT_CT5: 复用 IOPE7 输入使能位; |  |  |  |  |
| 位 5      | 0: 配置端口为 ADC 输入 B5             |  |  |  |  |
|          | 1:配置端口为数字 IO 输入端口 IOPE7        |  |  |  |  |
|          | REG_INPUT_CT4: 复用 IOPF0 输入使能位; |  |  |  |  |
| 位 4      | 0: 配置端口为 ADC 输入 B4             |  |  |  |  |
|          | 1: 配置端口为数字 IO 输入端口 IOPF0       |  |  |  |  |
| 位 3      | REG_INPUT_CT3: 复用 IOPF1 输入使能位; |  |  |  |  |



V1.4

|     | 1121/1101 00111 2 18101 × 18101 1 1 0 0 0 0 0 0 1 |  |
|-----|---------------------------------------------------|--|
|     | 0: 配置端口为 ADC 输入 B3                                |  |
|     | 1:配置端口为数字 IO 输入端口 IOPF1                           |  |
|     | REG_INPUT_CT2: 复用 IOPF2 输入使能位;                    |  |
| 位 2 | 0: 配置端口为 ADC 输入 B2                                |  |
|     | 1:配置端口为数字 IO 输入端口 IOPF2                           |  |
|     | REG_INPUT_CT1: 复用 IOPF3 输入使能位;                    |  |
| 位 1 | 0: 配置端口为 ADC 输入 B1                                |  |
|     | 1:配置端口为数字 IO 输入端口 IOPF3                           |  |
|     | REG_INPUT_CT0: 复用 IOPF4 输入使能位;                    |  |
| 位 0 | 0: 配置端口为 ADC 输入 B0                                |  |
|     | 1:配置端口为数字 IO 输入端口 IOPF4                           |  |

# 3) I/O 端口 F 数据和方向控制寄存器 PFDATDIR0 - 7096h

注: GPIOF0~GPIOF4 配置输出端口无效

| 15   | 14   | 13   | 12    | 11    | 10    | 9     | 8     |
|------|------|------|-------|-------|-------|-------|-------|
| 保留   | 保留   | 保留   | 保留    | 保留    | 保留    | 保留    | 保留    |
| RW_0 | RW_0 | RW_0 | RW_0  | RW_0  | RW_0  | RW_0  | RW_0  |
|      |      |      |       |       |       |       |       |
| 7    | 6    | 5    | 4     | 3     | 2     | 1     | 0     |
| 保留   | 保留   | 保留   | IOPF4 | IOPF3 | IOPF2 | IOPF1 | IOPF0 |
| RW_+ | RW_+ | RW_+ | RW_+  | RW_+  | RW_+  | RW_+  | RW_+  |

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, \_+复位后的值与相应引脚状态有关, S=只可被 置位;

|                                       | FnDIR:              |  |  |  |  |
|---------------------------------------|---------------------|--|--|--|--|
| 位 15~位 8                              | 0: 配置相应引脚为输入方式      |  |  |  |  |
| •                                     | 1: 配置相应引脚为输出方式      |  |  |  |  |
|                                       | 当 FnDIR=0,即引脚为输入方式; |  |  |  |  |
|                                       | 0: 读相应引脚的值为低电平      |  |  |  |  |
| \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 1: 读相应引脚的值为高电平      |  |  |  |  |
| 位7~位0                                 | 当 FnDIR=1,即引脚为输出方式; |  |  |  |  |
|                                       | 0:设置相应的引脚,使其输出为低电平  |  |  |  |  |
|                                       | 1: 设置相应的引脚,使其输出为高电平 |  |  |  |  |



# 13 串行通信接口 SCI

## 13.1 串行通信接口 SCI 功能简介

该系列器件集成一个串行通信接口 (SCI) 模块, 串口通信模块的寄存器的位宽为 8 位。SCI 支持 CPU 和其它使用标准 NRZ (非归零) 格式的异步外设之间进行异步串行数 字通信。SCI 的接收器和发送器是双缓冲的, 具备独立使能和中断位, 两部分可独立工作, 或者在全双工模式下同时工作。为了确保数据的完整性, SCI 会对收到的数据进行校验, 如帧中断校验、奇偶性、超限和帧错误校验等。位速率(波特率)可以通过一个 16 位的 波特率选择寄存器进行配置, 支持超过 65000 种的不同速率。SCI 模块包括:

- 两个 I/O 引脚
  - SCI 接收数据引脚
  - SCI 发送数据引脚
- 波特率可设定到 64K 不同速率
- 数据字格式
  - 1 个起始位
  - 1~8 付的可编程数据字长度
  - 一 奇偶校验位 (有/无)
  - 一 一个或两个停止位
- 4 个错误检测标志: 奇偶、超载、数据帧和中断检测
- 两种唤醒多处理器模式: 空闲线唤醒和位寻址唤醒
- 半双工或全双工操作
- 双缓冲的接收和发送功能
- 发送器和接收器操作可以通过针对状态标志的中断驱动或轮询算法来完成。



- 一 发送器: TXRDY 标志(发送器缓冲寄存器可以接收新字符)和 TX EMPTY 标志位(发送器移位寄存器已空)
- 接收器: RXRDY 标志(接收器缓冲寄存器已经准备好接收另外字符), BRKDT标志(故障条件发生)和 RX ERROR 标志(监视 4 个中断条件)
- 用于发送器和接收器中断的独立使能位 (除了 BRKDT)
- NRZ (非归零) 码格式
- SCI 模块控制寄存器位于控制寄存器帧内, 开始地址为 7050h

注:该模块中的所有寄存器都是连接到16位外设总线的8位寄存器。当访问寄存器时,寄存器数据位于低位字节(7-0),高位字节(15-8)被读为零。写入高位字节无效。



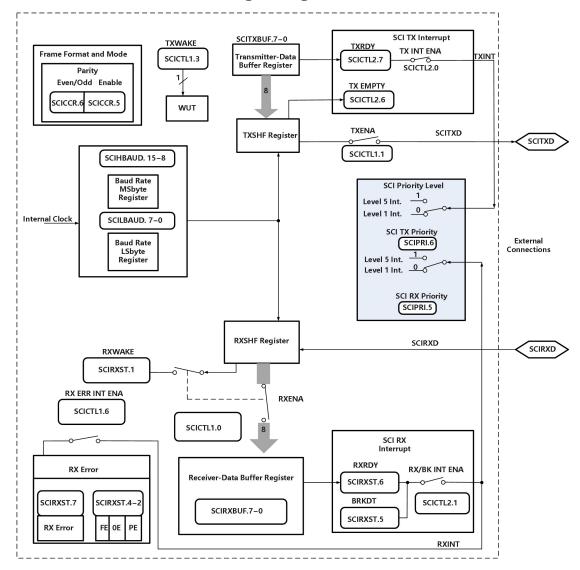



图 13.1 SCI 功能框图

## 13.2 SCI 寄存器

## 1. **串行通信接口 (SCI) 通信控制寄存器 SCICCR—7050h**

| 7         | 6                 | 5               | 4                   | 3                 | 2        | 1        | 0        |
|-----------|-------------------|-----------------|---------------------|-------------------|----------|----------|----------|
| STOP BITS | EVE/ODD<br>PARITY | PARITY<br>ENABE | LOOP<br>BACK<br>ENA | ADDR/IDL<br>EMODE | SCICHAR2 | SCICHAR1 | SCICHAR0 |
| RW_0      | RW_0              | RW_0            | RW_0                | RW_0              | RW_0     | RW_0     | RW_0     |

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

|  | Advancechip ADIVITORU | SAT Digital Signal Processor                  | V 1.4      |  |  |  |  |  |
|--|-----------------------|-----------------------------------------------|------------|--|--|--|--|--|
|  |                       | STOP BITS: SCI 停止位;                           |            |  |  |  |  |  |
|  | 位 7                   | 0: 一个停止位;                                     |            |  |  |  |  |  |
|  |                       | 1: 两个停止位;                                     |            |  |  |  |  |  |
|  |                       | EVE/ODD PARITY: SCI 奇/偶校验选择位。如果 PARITY ENABLE | 被置         |  |  |  |  |  |
|  | <i>(</i> ) •          | 位,则校验才有效,即判定发送和接收字符中的 1 的位数为计数或偶数             | <b>ኒ</b> ; |  |  |  |  |  |
|  | 位 6                   | 0: 奇校验;                                       |            |  |  |  |  |  |
|  |                       | 1: 偶校验;                                       |            |  |  |  |  |  |
|  |                       | PARITY ENABLE: SCI 奇/偶校验使能位;                  |            |  |  |  |  |  |
|  | 位 5                   | 0;禁止奇偶校验;                                     |            |  |  |  |  |  |
|  |                       | 1: 使能奇偶校验;                                    |            |  |  |  |  |  |
|  |                       | LOOP BACK ENA: 自测试模式使能位; 如果使能该位, 则发送引脚与接      |            |  |  |  |  |  |
|  |                       | 收引脚在系统内部连接在一起;                                |            |  |  |  |  |  |
|  | 位 4                   | 0: 禁用自测试模式;                                   |            |  |  |  |  |  |
|  |                       | 1; 使能自测试模式;                                   |            |  |  |  |  |  |
|  |                       | ADDR/IDLEMODE:SCI 多处理器模式选择位;                  |            |  |  |  |  |  |
|  | 位 3                   | 0: 选择空闲多处理器模式;                                |            |  |  |  |  |  |
|  |                       | 1: 选择地址位多处理器模式;                               |            |  |  |  |  |  |
|  |                       | SCICHAR2~ SCICHAR0: SCI 字符长度选择位;              |            |  |  |  |  |  |
|  |                       | 000 1位 001 2位                                 |            |  |  |  |  |  |
|  | 位 2~位 0               | 010 3位 011 4位                                 |            |  |  |  |  |  |
|  |                       | 100 5位 101 6位                                 |            |  |  |  |  |  |
|  |                       | 110 7位 111 8位                                 |            |  |  |  |  |  |

# 2. **串行通信接口 (SCI) 控制寄存器 SCICTL1** - 7051

| 7   | 6       | 5       | 4   | 3       | 2     | 1     | 0     |
|-----|---------|---------|-----|---------|-------|-------|-------|
| 保留位 | RX ERR  | SWRESET | 保留位 | TXW AKE | SLEEP | TXENA | RXENA |
|     | INT ENA |         |     |         |       |       |       |
| R_0 | RW_0    | RW_0    | R_0 | RS_0    | RW_0  | RW_0  | RW_0  |

| Advancechip   | ADM16F03A1 Digital Signal Processor                | V1.4 |
|---------------|----------------------------------------------------|------|
| 位7            | 保留位                                                |      |
|               | RX ERR INT ENA: SCI 接收错误中断使能位。如果该位被置位,当接收发生错误时,R   | ιx   |
| 位 6           | ERROR 位被置 1,并且发生接收错误中断;                            |      |
| <u>√177</u> O | 0: 禁止接收错误中断;                                       |      |
|               | 1: 使能接收错误中断;                                       |      |
| 位 5           | SW RESET: SCI 软件复位 (写 0 有效);                       |      |
| 位 4           | 保留位;                                               |      |
|               | TXWAKE: SCI 发送器唤醒方式选择位。                            |      |
|               | 0: 不选择发送特性;                                        |      |
|               | 1: 发送特性取决于工作模式,空闲线模式或寻址位模式                         |      |
|               | 空闲线模式,对 TXWAKE 写入 1 后再对 SCITXBUF 写入传输数据,生成一个 11 位数 | 据    |
| 位 3           | 的空闲周期                                              |      |
|               | 寻址位模式,对 TXWAKE 写入 1 后再对 SCITXBUF 写入传输数据,以设置给定数据的   | 帧    |
|               | 的地址位为 1                                            |      |
|               | TXWAKE 不能通过 SWRESET 清除,但可以通过系统复位或者 TXWAKE 发送到 WU   | JT   |
|               | 标识                                                 |      |
|               | SLEEP: SCI 休眠模式位;                                  |      |
| 位 2           | 0: 禁止休眠模式;                                         |      |
|               | 1: 使能休眠模式;                                         |      |
|               | TXENA:SCI 发送使能,仅当 TXENA 置位时,数据才能从 SCITXD 引脚发送出去。   | 如    |

果复位,则把 SCITXBUF 寄存器中的数据发送完后才停止发送;

送到接收缓冲器。该位使能或禁止接收(传送到缓冲器);

RXENA: SCI 接收使能,从 SCIRXD 引脚上接收到的数据被送到接收移位寄存器,再传

## 3. 串行通信接口 (SCI) 控制寄存器 SCICTL2 - 7054h

0: 禁止发送;1: 使能发送;

洲世世一フ

位1

位 0

| 7     | 6       | 5~2 | 1            | 0         |
|-------|---------|-----|--------------|-----------|
| TXRDY | TXEMPTY | 保留  | RX/BKINT ENA | TX INTENA |
| R_1   | R_1     | R_0 | RW_0         | RW_0      |

0: 禁止将接收到的数据传送到 SCIRXEMU 和 SCIRXBUF 接收缓冲寄存器; 1: 允许将接收到的数据传送到 SCIRXEMU 和 SCIRXBUF 接收缓冲;

| 位 1           | RX/BK INT ENA:接收缓冲器/故障中断使能位。该位控制 RXRDY 或 BRKDT         |
|---------------|--------------------------------------------------------|
| 位 5 ~ 位 2     | 保留                                                     |
| 1 <u>77</u> 0 | 1:SCITXBUF和TXSHF寄存器都为空;                                |
| 位 6           | TX EMPTY:发送器空标志;<br>0:SCITXBUF 或者 TXSHF 寄存器或者两者都装入了数据; |
|               | 1; SCITXBUF 准备接收下一个字符;                                 |
| 位 7           | 0: SCITXBUF 未清空;                                       |
|               | TXRDY: 发送缓冲寄存器准备好标志;                                   |



V1.4

|                  | 标志位触发的中断请求。但 RX/BK INT ENA 并不阻止这些标志位置位;      |
|------------------|----------------------------------------------|
|                  | 0:禁止 RXRDY/BRKDT 中断;                         |
|                  | 1:使能 RXRDY/BRKDT 中断;                         |
|                  | TX INT ENA : 发送缓冲器中断使能位,该位控制 TXRDY 标志位触发的中断请 |
| / <del>:</del> 0 | 求。但 TX INT ENA 并不阻止 TXRDY 标志位置位;             |
| 位 0              | 0:禁止 TXRDY 中断;                               |
|                  | 1: 使能 TXRDY 中断;                              |

## 4. **串行通信接口 (SCI) 接收状态寄存器 SCIRXST**—7055h

| 7       | 6     | 5     | 4   | 3   | 2   | 1      | 0   |
|---------|-------|-------|-----|-----|-----|--------|-----|
| RXERROR | RXRDY | BRKDT | FE  | OE  | PE  | RXWAKE | 保留  |
| R 0     | R 0   | R 0   | R 0 | R 0 | R 0 | R 0    | R 0 |

| 1: 检测到超时错误; |  |  |  |  |
|-------------|--|--|--|--|
|             |  |  |  |  |
|             |  |  |  |  |
|             |  |  |  |  |
| 器唤醒条件,      |  |  |  |  |
| (BUF 中数据    |  |  |  |  |
| 2闲,就置位      |  |  |  |  |
|             |  |  |  |  |
|             |  |  |  |  |
|             |  |  |  |  |
|             |  |  |  |  |
|             |  |  |  |  |
|             |  |  |  |  |
|             |  |  |  |  |

V1.4

位 0

保留

## 5. 串行通信接口 (SCI) 接收仿真数据缓冲寄存器 SCIRXEMU—7056h

| 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ERXDT7 | ERXDT6 | ERXDT5 | ERXDT4 | ERXDT3 | ERXDT2 | ERXDT1 | ERXDT0 |
| R_0    |

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

#### 6. 串行通信接口 (SCI) 接收数据缓冲寄存器 SCIRXBUF—7057h

| 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     | _ |
|-------|-------|-------|-------|-------|-------|-------|-------|---|
| RXDT7 | RXDT6 | RXDT5 | RXDT4 | RXDT3 | RXDT2 | RXDT1 | RXDT0 |   |
| R_0   |   |

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

来自接收引脚的数据从接收移位寄存器 RXSHF 传送到接收缓冲寄存器 SCIRXBUF中,当传送操作完成后,RXRDY 标志位置 1,表明接收到数据并等待读取操作。SCIRXBUF和 SCIRXEMU 存放相同的数据,两者拥有独立的地址但在物理并不分离缓存,唯一区别仅在于,对 SCIRXEMU 执行读取操作时不会清除 RXRDY 标志位,而读取 SCIRXBUF操作会同时清除 RXRDY 标志。

#### 7. 串行通信接口 (SCI) 发送数据缓冲寄存器 SCITXBUF—7059h

| 7      | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|--------|-------|-------|-------|-------|-------|-------|-------|
| TXXDT7 | TXDT6 | TXDT5 | TXDT4 | TXDT3 | TXDT2 | TXDT1 | TXDT0 |
| RW_0   | RW_0  | RW_0  | RW_0  | RW_0  | RW_0  | RW_0  | RW_0  |

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

#### 8. 串行通信接口 (SCI) 通信优先级控制寄存器 SCIPRI—705Fh

| 7      | 6        | 5        | 4        | 3        | 2~0       |  |
|--------|----------|----------|----------|----------|-----------|--|
| 保留     | SCI TX   | SCI RX   | SCI SOFT | SCI FREE | 保留        |  |
| 括笛<br> | PRIORITY | PRIORITY | 3CI 3OF1 | 3CI FREE | <b>本田</b> |  |
| R_0    | RW_0     | RW_0     | RW_0     | RW_0     | R_0       |  |

| 位7  | 保留                               |
|-----|----------------------------------|
| 位 6 | SCI TX PRIORITY: SCI 发送中断优先级选择位; |

|           | ADMITOTOSAI Digital Signal I Toccssol | V 1.4 |
|-----------|---------------------------------------|-------|
|           | 0: 高优先级中断请求;                          |       |
|           | 1: 低优先级中断请求;                          |       |
|           | SCI RX PRIORITY:SCI 接收中断优先级选择位;       |       |
| 位 5       | 0: 高优先级中断请求;                          |       |
|           | 1: 低优先级中断请求;                          |       |
|           | SCI SOFT 和 SCI FREE: SCI 仿真挂起选择位;     |       |
|           | 00: 仿真挂起触发, SCI 立即停止;                 |       |
| 位 4 ~ 位 3 | 01:SCI 持续运行,不受仿真挂起影响;                 |       |
|           | 10: 仿真挂起触发,完成当前接收/发送操作后停止;            |       |
|           | 11: SCI 持续运行,不受仿真挂起影响;                |       |
| 位 2~位 0   | 保留                                    |       |

## 9. 串行通信接口 (SCI) 波特率选择高字节寄存器 SCIHBAUD—7052h

| 7      | 6      | 5      | 4      | 3      | 2      | 1     | 0     |
|--------|--------|--------|--------|--------|--------|-------|-------|
| BAUD15 | BAUD14 | BAUD13 | BAUD12 | BAUD11 | BAUD10 | BAUD9 | BAUD8 |
| RW_0   | RW_0   | RW_0   | RW_0   | RW_0   | RW_0   | RW_0  | RW_0  |

注: R=可读, W=可写, C=清除, 0=复位值, X=复位值不确定, S=只可被置位;

## 10. 串行通信接口 (SCI) 波特率选择低字节寄存器 SCILBAUD—7053h

| 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|-------|-------|-------|-------|-------|-------|-------|-------|
| BAUD7 | BAUD6 | BAUD5 | BAUD4 | BAUD3 | BAUD2 | BAUD1 | BAUD0 |
| RW_0  |

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

BAUD15~BAUD0: 串行通信接口 16 位波特率选择位。SCIHBAUD (高字节) 和 SCILBAUD (低字 位 15~位0 节) 连接在一起形成 16 位波特率值。  $SCI\ BAUD = SYSCLK/[(BRR + 1) \times 8]$ 



# 14 事件管理器模块 EM1

# 14.1 事件管理器模块 EM1 简介

该系列器件集成一个事件管理器模块 EM1, 此模块包括通用(GP) 定时器、完全比 较/ PWM 单元、捕获单元和正交编码器脉冲(QEP) 电路。表 14.1 列出了 EM1 包含的 主要模块、信号名称、功能特性,图 14.1 展示了事件管理器模块 (EM1) 功能结构。

表 14.1 针对 EM1 模块和信号名称

| 事件签理吸描机       | EM1      |                     |  |  |
|---------------|----------|---------------------|--|--|
| 事件管理器模块       | 模块       | 信号                  |  |  |
|               | GP 定时器 1 | T1CmpareA/T1CmpareB |  |  |
| 通用定时器         | GP 定时器 2 | T2Cmpare            |  |  |
| <b>週</b> 月足的奇 | GP 定时器 7 | PWM7                |  |  |
|               | GP 定时器 8 | PWM8                |  |  |
|               | 比较器 1    | PWM1/2              |  |  |
| 全功能比较单元       | 比较器 2    | PWM3/4              |  |  |
|               | 比较器 3    | PWM5/6              |  |  |
|               | 捕捉 1     | CAP1                |  |  |
| 捕捉单元          | 捕捉 2     | CAP2                |  |  |
|               | 捕捉 3     | CAP3                |  |  |
| OED           | QEP1     | QEP1                |  |  |
| QEP           | QEP2     | QEP2                |  |  |
| /L 並(た)       | 计数方向     | TDIRA               |  |  |
| 外部输入          | 外部时钟     | TCLKINA             |  |  |



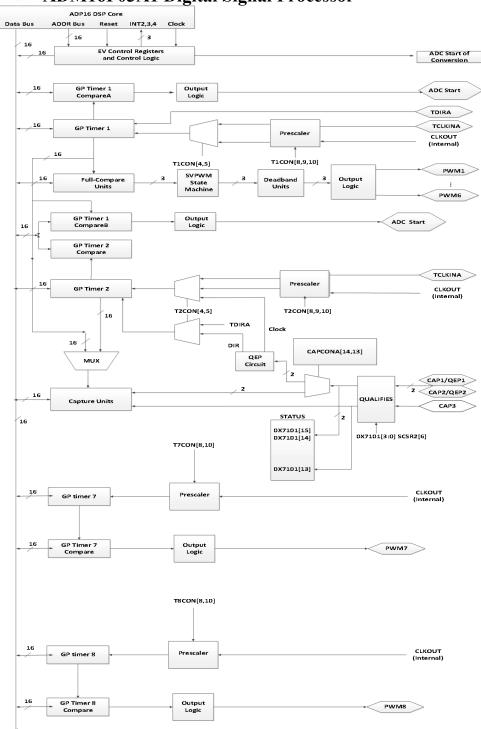



图 14.1 事件管理器模块 EM1 功能框图

# 14.2 事件管理器模块 EM1 中断

### 14.2.1 事件管理器模块 EM1 中断组

事件管理器中断事件分为三组:中断组 A, B, C。每个中断组包含各自不同的中断

V1.4



# 

标志,中断使能寄存器和特定的外设事件中断请求。在第9章中断系统的表9-1 ADM16F03A1 中断源优先级和中断向量表中列出了 EM1 模块相关的中断;每个 EM1 中断组都有一个中断标志寄存器和相应的中断屏蔽寄存器。

# 14.2.2 事件管理器模块 (EM1) 中断控制寄存器

## 1.中断标志寄存器 EM1IFRA—742Fh, 中断屏蔽寄存器 EM1IMRA—742Ch;

|             | 15~11 |         | 10      | 9       | 8      |
|-------------|-------|---------|---------|---------|--------|
|             | 保留    |         |         | T1UFINT | T1CINT |
|             |       |         |         | FLAG    | FLAG   |
|             | R_0   |         | RW1C_0  | RW1C_0  | RW1C_0 |
| 7           | 6~4   | 3       | 2       | 1       | 0      |
| T1PINT FLAG | 保留    | CMP3INT | CMP2INT | CMP1INT | PDPINT |
| RW1C_0      | R_0   | RW1C_0  | RW1C_0  | RW1C_0  | RW1C_0 |

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不定, S=仅可置位, W1C=写 1 清除;

|           | EM1IFRA                                                                   | EM1IMRA                                  |
|-----------|---------------------------------------------------------------------------|------------------------------------------|
| 位 15~位 11 | 保留;                                                                       | 保留;                                      |
| 位 10      | T1OFINT FLAG: 通用定时器 1 上溢中断标志;<br>读: 0 标志被复位; 写: 0 无效;<br>1 标志被置位: 1 复位标志; | 通用定时器 1 上溢中断使能位:<br>0 禁止该中断;<br>1 使能该中断; |
| 位 9       | T1UFINT FLAG:通用定时器 1 下溢中断标志;读: 0 标志被复位; 写: 0 无效; 1 标志被置位: 1 复位标志          | 通用定时器 1 下溢中断使能位: 0 禁止该中断; 1 使能该中断;       |
| 位 8       | T1CINT FLAG: 通用定时器 1 比较中断标志;<br>读: 0 标志被复位; 写: 0 无效;<br>1 标志被置位: 1 复位标志   | 通用定时器 1 比较中断使能位: 0 禁止该中断; 1 使能该中断;       |
| 位 7       | T1PINT FLAG: 通用定时器 1 周期中断标志;<br>读: 0 标志被复位; 写: 0 无效;<br>1 标志被置位: 1 复位标志   | 通用定时器 1 周期中断使能位: 0 禁止该中断; 1 使能该中断;       |
| 位 6~位4    | 保留;                                                                       | 保留;                                      |
| 位 3       | CMP3INT: 比较单元 3 中断标志;<br>读: 0 标志被复位; 写: 0 无效;<br>1 标志被置位: 1 复位标志          | 比较单元 3 中断使能位:<br>0 禁止该中断;<br>1 使能该中断;    |

| A | 进芯电子        |
|---|-------------|
|   | Advancechip |

| V1. | .4 |
|-----|----|
|-----|----|

|     | CMP2INT:比较单元2中断标志;                | 比较单元 2 中断使能位: |
|-----|-----------------------------------|---------------|
| 位 2 | 读: 0 标志被复位; 写: 0 无效;              | 0 禁止该中断;      |
|     | 1 标志被置位: 1 复位标志                   | 1 使能该中断;      |
|     | CMP1INT:比较单元1中断标志;                | 比较单元1中断使能位:   |
| 位 1 | 读: 0 标志被复位; 写: 0 无效;              | 0 禁止该中断;      |
|     | 1 标志被置位: 1 复位标志                   | 1 使能该中断;      |
|     | <br>  PDPINT FLAG:通用定时器 1 保护中断标志; | 通用定时器 1 保护中断使 |
| 位 0 | 读: 0 标志被复位; 写: 0 无效;              | 能位:           |
|     | 1 标志被置位: 1 复位标志                   | 0 禁止该中断;      |
|     |                                   | 1 使能该中断;      |

# 2. 中断标志寄存器 EM1IFRB—7430h, 中断屏蔽寄存器 EM1IMRB—742Dh;

| 15~4 | 3       | 2       | 1      | 0      |
|------|---------|---------|--------|--------|
| IDΩ  | T2OFINT | T2UFINT | T2CINT | T2PINT |
| 保留   | FLAG    | FLAG    | FLAG   | FLAG   |
| R_0  | RW1C_0  | RW1C_0  | RW1C_0 | RW1C_0 |

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不定, S=仅可置位, W1C=写 1 清除;

|          | EM1IFRB                      | EM1IMRB         |
|----------|------------------------------|-----------------|
| 位 15~位 4 | 保留                           | 保留              |
|          | T2OFINT FLAG:通用定时器 2 上溢中断标志; | 通用定时器 2 上溢中断使能: |
| 位 3      | 读: 0 标志被复位; 写: 0 无效;         | 0 禁止该中断;        |
|          | 1 标志被置位: 1 复位标志;             | 1 使能该中断;        |
|          | T2UFINT FLAG:通用定时器 2 下溢中断标志; | 通用定时器 2 下溢中断使能: |
| 位 2      | 读: 0 标志被复位; 写: 0 无效;         | 0 禁止该中断;        |
|          | 1 标志被置位: 1 复位标志;             | 1 使能该中断;        |
|          | T2CINT FLAG:通用定时器 2 比较中断标志;  | 通用定时器 2 比较中断使能: |
| 位 1      | 读: 0 标志被复位; 写: 0 无效;         | 0 禁止该中断;        |
|          | 1 标志被置位: 1 复位标志;             | 1 使能该中断;        |
|          | T2PINT FLAG:通用定时器 2 周期中断标志;  | 通用定时器 2 周期中断使能: |
| 位 0      | 读: 0 标志被复位; 写: 0 无效;         | 0 禁止该中断;        |
|          | 1 标志被置位: 1 复位标志;             | 1 使能该中断;        |

## 3. 中断标志寄存器 EM1IFRC—7431 h,中断屏蔽寄存器 EM1IMRC—742Eh



| 15~3 | 2       | 1       | 0       |
|------|---------|---------|---------|
| 保留   | CAP1INT | CAP2INT | CAP3INT |
| жы   | FLAG    | FLAG    | FLAG    |
| R 0  | RW1C 0  | RW1C 0  | RW1C 0  |

注: R=可读, W=可写, C=清除, 0=复位值, X=复位值不定, S=仅可置位, W1C=写 1 清除;

|          | EM1IFRC                    | EM1IMRC       |
|----------|----------------------------|---------------|
| 位 15~位 3 | 保留;                        | 保留;           |
|          | CAP3INT FLAG: 捕获单元 3 中断标志; | 捕获单元 3 中断使能位: |
| 位 2      | 读: 0 标志被复位; 写: 0 无效;       | 0 禁止该中断       |
|          | 1 标志被置位: 1 复位标志;           | 1 使能该中断       |
|          | CAP2INT FLAG: 捕获单元 2 中断标志; | 捕获单元2中断使能位:   |
| 位 1      | 读: 0 标志被复位; 写: 0 无效;       | 0 禁止该中断       |
|          | 1 标志被置位: 1 复位标志;           | 1 使能该中断       |
|          | CAPIINT FLAG: 捕获单元 1 中断标志; | 捕获单元1中断使能位:   |
| 位 0      | 读: 0 标志被复位; 写: 0 无效;       | 0 禁止该中断       |
|          | <br>  1 标志被置位: 1 复位标志;     | 1 使能该中断       |

# 14.3 事件管理器 EM1 通用定时器

事件管理器模块包含有四个通用定时器 Tx (x=1, 2, 7, 8)。这些通用定时器包含以下功能电路:

- 一个 16 位定时增/减计数计数器, TxCNT, 用于读取或者写入, T1CNT 地址 7401h, T2CNT 地址 7405h, T7CN 地址 7533h, T8CNT 地址 7537h;
- 定时器 1 包含两个 16 位定时器比较寄存器,T1CMPRA,T2CMPR/T1CMPRB (使用阴影寄存器实现双缓冲),用于读取或者写入,T1CMPRA 地址 7402h,T2CMPR/T1CMPRB 地址 7406h,定时器 7 和定时器 8 各一个比较寄存器,T7CMPR 地址 7535h,T8CMPR 地址 7539h;
- 一个 16 位定时器周期寄存器, TxPR(使用阴影寄存器实现双缓冲), 用于读取或者写入, T1PR 地址为 7403h, T2PR 为地址 7407h, T7PR 地址为 7534h,



T8PR 地址为 7538h;

- 一个 16 位定时器控制寄存器, TxCON, 用于读取或者写入;
- 一个针对内部时钟输入的可编程预分频器;
- 中断控制逻辑,用于四个可屏蔽中断:下溢,上溢,定时器比较和周期中断。(定时器7,8只有上溢中断)
- 一个可选方向输入引脚(TDIRx) (当定向增/减计数模式被选中时进行增计数或者减计数)

通用定时器 1 可为捕捉单元、正交脉冲计数、T1CompareA、T1CompareB 和全功能比较器提供时基,T1CompareA 可产生 ADC 采样触发信号 T1A SOC(可选择上升沿或者下降沿触发,具体配置见 15.7ADC 寄存器概述),T1CompareB 产生 ADC 采样触发信号 T1B SOC(可选择上升沿或者下降沿触发,具体配置见 15.7ADC 寄存器概述),全功能比较器用于产生 PWM1~PWM6 信号。通用定时器 2 为捕捉单元、正交脉冲计数和 T2Compare 提供时基。通用定时器 7 为 T7Compare 提供电路提供时基,产生 PWM7信号。通用定时器 8 为 T8Compare 提供电路提供时基,产生 PWM8信号。其中,T1CompareA 比较参考值由寄存器 T1CMPRA 提供,T1CompareB 的比较参考值由寄存器 T1CMPRB 提供,T2Compare 比较参考值由寄存器 T7CMPR 提供。 T7CMPR 提供。 T7CMPR 提供。 T7CMPR 提供。 T7CMPR 提供。 T7CMPR 提供。 其中,寄存器 T2CMPR 与 T1CMPRB 为同一个寄存器。

### 14.3.1 事件管理器 EM1 通用定时器控制寄存器

1. 定时器 x 控制控制寄存器 (TxCON: x = 1,2) —7404h (T1CON) / 7408h (T2CON);

| 15   | 14   | 13   | 12     | 11     | 10   | 9    | 8    |
|------|------|------|--------|--------|------|------|------|
| FREE | SOFT | 保留位  | TMODE1 | TMODE0 | TPS2 | TPS1 | TPS0 |
| RW_0 | RW_0 | RW_0 | RW_0   | RW_0   | RW_0 | RW_0 | RW_0 |



| 7      | 6       | 5      | 4      | 3     | 2     | 1      | 0        |
|--------|---------|--------|--------|-------|-------|--------|----------|
| T2SWT1 | TENABLE | TCLKS1 | TCLKS0 | TCLD1 | TCLD0 | TECMPR | SEL T1PR |
| RW 0   | RW 0    | RW 0   | RW 0   | RW 0  | RW 0  | RW 0   | RW 0     |

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不定, S=仅可置位, W1C=写 1 清除;

|                                    | NE2/3011. [/]桑川崎位,<br>00: 立即停止                          |  |  |  |  |
|------------------------------------|---------------------------------------------------------|--|--|--|--|
| 12.3 12                            | 10:不受仿真影响  11:不受仿真影响                                    |  |  |  |  |
|                                    | <b>呆留位</b> ;                                            |  |  |  |  |
| 12 13                              | 所のD1/TMOD0: 计数模式选择位;                                    |  |  |  |  |
| _                                  | 100                                                     |  |  |  |  |
| 13.15 13.11                        | 10:连续增计数 11:连续减计数                                       |  |  |  |  |
|                                    | IPS2~TPSO:输入时钟预定标系数;                                    |  |  |  |  |
|                                    | 1F32~FF30.                                              |  |  |  |  |
| / <del>∴</del> 10 / <del>∴</del> 0 | 100: x/16                                               |  |  |  |  |
|                                    | 600. x/10                                               |  |  |  |  |
|                                    | 125WT1:定时器 2 周期使能选择位,在定时器 1 中保留;                        |  |  |  |  |
|                                    | ): 使用自身定时器使能位                                           |  |  |  |  |
| 1-2 '                              | 1:使用 T1CON 的使能或禁用,忽略自身使能位                               |  |  |  |  |
|                                    | I. 使用 I CON 的使能或崇角,恐喝自身使能应<br>FENABLE: 定时器 2 使能位。       |  |  |  |  |
|                                    | ):禁止定时器运行                                               |  |  |  |  |
|                                    | 1: 使能定时器运行                                              |  |  |  |  |
|                                    | 「CLKS1/TCLKSO: 时钟源选择;                                   |  |  |  |  |
|                                    | 00: 内部 CPU 时钟                                           |  |  |  |  |
|                                    | 01: 保留                                                  |  |  |  |  |
| 1 1 2 1 2 1                        | 10: 保留                                                  |  |  |  |  |
|                                    | 11:正交编码脉冲电路—只适合于定时器 2,在定时器 1 中保留,此操作只在 SEL T1PR = 0 时有效 |  |  |  |  |
|                                    | 「CLD1/TCLD0: 定时器比较寄存器的重新加载条件;                           |  |  |  |  |
|                                    | 00: 当计数值是 0 时 01: 当计数值是 0 或等于周期寄存器时                     |  |  |  |  |
| 12012-                             | 10: 立即加载                                                |  |  |  |  |
|                                    | TECMPR: 定时器比较使能;                                        |  |  |  |  |
| 0                                  | ):禁止定时器比较操作                                             |  |  |  |  |
| (六 1                               | : 使能定时器比较操作                                             |  |  |  |  |
|                                    | 主: x=2 时,该位同时为 T1CompareB 和 T2Compare 使能位;              |  |  |  |  |
|                                    | SEL T1PR:周期寄存器选择,在定时器 2 中有效,定时器 1 中保留;                  |  |  |  |  |
|                                    | ): 使用自身定时器周期寄存器                                         |  |  |  |  |
|                                    | l:使用 T1PR,忽略自身周期寄存器                                     |  |  |  |  |

# 2. 定时器 x 控制控制寄存器 TxCON—7532h (T7CON) / 7536h (T8CON)

当上溢事件发生后,上溢中断标志被置位,引起定时器 T7 或 T8 溢出中断标志置位,

RW\_0

 $RW_0$ 

RW\_0



R\_0

# 

产生中断请求,如果相应的中断未被屏蔽,CPU 则会响应相应的中断。当下溢事件发生 时,下溢标志会被置位。

| 15      | 14             | 13     | 12     | 11     | 10     | 9      | 8       |
|---------|----------------|--------|--------|--------|--------|--------|---------|
| OF FLAG | UPINT          | TxSTAT | TMODE1 | TMODE2 | TPS2   | TPS1   | TPS0    |
| RW1C 0  | FLAG<br>RW1C 0 | R_1    | RW 0    |
| KW1C_0  | KW1C_0         | 1\_1   | 1.44_0 | 1.44_0 | 1447_0 | 1.00_0 | 1444_0  |
| 7       | 6              | 5      | 4      | 3      | 2      | 1      | 0       |
| 保留      | UPIMR          | TPIN1  | TPIN0  | TCLD1  | TCLD0  | TECMPR | TENABLE |

RW\_0 RW\_0

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不定, S=仅可置位, W1C=写 1 清除;

RW\_0

RW\_0

|                 | OF FLAG: 下溢标志位;                     |
|-----------------|-------------------------------------|
| 位 15            | 读: 0 标志被复位 写: 0 无效                  |
|                 | 1 标志被置位 1 复位标志                      |
|                 | UPINT FLAG:上溢中断标志位;                 |
| 位 14            | 读: 0 标志被复位 写: 0 无效                  |
|                 | 1 标志被置位 1 复位标志                      |
|                 | TxSTAT: 计数器状态位 (只读);                |
| 位 13            | 0: 向上计数;                            |
|                 | 1: 向下计数;                            |
|                 | TMODE1/TMODE0: 计数模式选择;              |
| 位 12~位 11       | 00: 停止 01: 连续增/减                    |
|                 | 10:连续增计数 11:连续减计数                   |
|                 | TPS2~TPS0:輸入时钟分频;                   |
| 位 10~位8         | 000: x/1 001: x/2 010: x/4 011: x/8 |
|                 | 100: x/16                           |
| 位7              | 保留                                  |
|                 | UPIMR: 上溢中断使能;                      |
| 位 6             | 0: 禁止上溢中断;                          |
|                 | 1: 使能上溢中断;                          |
|                 | TPIN1/TPIN0: PWM7/PWM8 输出极性选择;      |
| 位 5~位4          | 00: 强制低 01: 低有效                     |
|                 | 10: 高有效 11: 强制高                     |
|                 | TCLD1/TCLD0:比较寄存器重载条件;              |
| 位 3~位2          | 00: 计数器为 0 时重载 01: 计数器为周期值时重载       |
|                 | 10: 立即重载 11: 计数器为周期值和 0 时重载         |
| / <del></del> 4 | TECMPR: 比较使能;                       |
| 位 1             | 0: 截止定时器比较操作                        |



V1.4

|     | 1: 使能定时器比较操作    |  |
|-----|-----------------|--|
|     | TENABLE: 定时器使能; |  |
| 位 0 | 0: 禁止定时器操作      |  |
|     | 1: 使能定时器操作      |  |

## 3.通用定时器 1, 2 全局控制寄存器 GPTCONA—7400h;

全局通用定时器控制寄存器,规定了通用定时器1和定时器2多种计数模式,以及 计数方向;

| 15                                                  | 14     | 13     | 12   | 11   | 10      | 9       | 8       |  |  |
|-----------------------------------------------------|--------|--------|------|------|---------|---------|---------|--|--|
| 保留位                                                 | T2STAT | T1STAT | 保留位  | 保留位  | T2TOADC | T2TOADC | T1TOADC |  |  |
| RW_0                                                | R_1    | R_1    | RW_0 | RW_0 | RW_0    | RW_0    | RW_0    |  |  |
|                                                     |        |        |      |      |         |         |         |  |  |
| 7                                                   | 6      | 5      | 4    | 3    | 2       | 1       | 0       |  |  |
| T1TOADC                                             | ТСОМРО | 宝 保留位  | 保留位  | T2PI | N T2PIN | T1PIN   | T1PIN   |  |  |
| RW_0                                                | RW_0   | RW_0   | RW_0 | RW_  | 0 RW_0  | RW_0    | RW_0    |  |  |
| 注:R=可读,W=可写,C=清除, 0=复位值, X=复位值不定,S=仅可置位,W1C=写 1 清除; |        |        |      |      |         |         |         |  |  |

| 位 15      | 保留位;                        |
|-----------|-----------------------------|
|           | T2STAT: 定时器 2 的状态位,只读;      |
| 位 14      | 0: 减计数;                     |
|           | 1: 增计数;                     |
|           | T2STAT: 定时器 2 的状态位,只读;      |
| 位 13      | 0: 减计数;                     |
|           | 1: 增计数;                     |
| 位 12~位 11 | 保留位;                        |
|           | T2TOADC: 定时器 2 触发 A/D 转换事件; |
|           | 00: 不配置触发 A/D 转换;           |
| 位 10~位 9  | 01: 下溢中断标志来触发 A/D 转换;       |
|           | 10:周期中断标志来触发 A/D 转换;        |
|           | 11: 保留;                     |
|           | T1TOADC: 定时器 1 触发 A/D 转换事件; |
|           | 00: 不配置触发 A/D 转换;           |
| 位 8~位7    | 01: 下溢中断标志来触发 A/D 转换;       |
|           | 10: 周期中断标志来触发 A/D 转换;       |
|           | 11: 保留;                     |
|           | TCOMPOE: 比较输出允许;            |
| 位 6       | 0: 禁止所有定时器的比较输出;            |
|           | 1: 使能所有定时器的比较输出;            |



| 位 5~位4    | 保留位;                   |
|-----------|------------------------|
|           | T2PIN: 通用定时器 2 比较输出极性; |
|           | 00: 强制低;               |
| 位3~位2     | 01: 低有效;               |
|           | 10: 高有效;               |
|           | 11: 强制高;               |
|           | T1PIN: 通用定时器 1 比较输出极性; |
|           | 00: 强制低;               |
| 位 1 ~ 位 0 | 01: 低有效;               |
|           | 10: 高有效;               |
|           | 11: 强制高;               |

## 4.PWM7 和 PWM8 的使能寄存器—753Eh;

| 15      | 14      | 13               | 12   | 11    | 10   | 9      | 8          |
|---------|---------|------------------|------|-------|------|--------|------------|
| PWM8_EN | PWM7_EN | PWM8_O<br>UT_PAD | 保留位  | 保留位   | 保留位  | PipeEn | WaitModeEn |
| RW_0    | RW_0    | RW_0             | RW_0 | RW_0  | RW_0 | RW_0   | RW_0       |
| 7       | 6       | 5                | 4    | 3     | 2    | 1      | 0          |
| 保留位     | 保留位     | 保留位              | 保留位  | AutoF |      | WaitNu | ım         |
| RW_0    | R_1     | R_1              | RW_0 | RW_0  | RW_0 | RW_0   | RW_0       |

|      | PWM8_EN: PWM8 使能位;             |
|------|--------------------------------|
| 位 15 | 0: 禁止 PWM8 输出;                 |
|      | 1: 使能 PWM8 输出;                 |
|      | PWM7_EN: PWM7 使能位;             |
| 位 14 | 0: 禁止 PWM7 输出;                 |
|      | 1: 使能 PWM7 输出;                 |
|      | PWM8_OUT_PAD: 使能 PWM8 输出到 pad; |
| 位 13 | 0: 禁止 PWM8 输出到 pad;            |
|      | 1: 使能 PWM8 输出到 pad;            |

## 5.T7 和 T8 溢出中断控制寄存器—752Fh;

T7、T8 的上溢中断标志位产生时,将溢出中断标志置位,同时会触发相应的中断动作。T7、T8 溢出中断指向 INT2。

| 15~11 | 10      | 9       | 8~0   |
|-------|---------|---------|-------|
| 保留    | Т8      | Т7      | 保留    |
| N. C. | INTFLAG | INTFLAG | N. F. |



R 0

RW1C 0 RW1C 0

R 0

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不定, S=仅可置位, W1C=写 1 清除;

| 位 15~位 11 | 保留                     |
|-----------|------------------------|
|           | T8 INTFLAG: T8 溢出中断标志; |
| 位 10      | 读: 0 标志被复位; 写: 0 无效;   |
|           | 1 标志被置位: 1 复位标志;       |
|           | T7 INTFLAG: T7 溢出中断标志; |
| 位 9       | 读: 0 标志被复位; 写: 0 无效;   |
|           | 1 标志被置位: 1 复位标志;       |
| 位 8~位 0   | 保留                     |

## 14.4 事件管理器模块 EM1 全功能比较单元

事件管理器上有三个完全比较单元。这些比较单元使用通用定时器作为时基产生六路比较输出的 PWM 波形,并内嵌可编程的死区电路。六路输出中每一路输出的状态可独立配置。比较单元的比较寄存器是双缓冲的,以实现所需的比较/ PWM 脉冲宽度可编程调整。

### 完全比较单元包括:

- 3 个 16 位的比较寄存器,CMPR3 地址为 7419h,CMPR2 地址为 7418h,CMPR1 地址为 7417h,它们各自带有一个可读/可写的影子寄存器;
- 一个可读/可写的比较控制寄存器, COMCONA;
- •一个 16 位比较方式控制寄存器, ACTRA (带有影子寄存器);
- 6 个 PWM (三态) 输出引脚 (PWM1~PWM6);
- 控制和中断逻辑;

### 14.4.1 事件管理器模块 EM1 全功能比较控制寄存器

1. 比较控制寄存器 COMCONA—7411h



# 

V1.4

| 15      | 14                  | 13   | 12       | 11      | 10      | 9       | 8  |
|---------|---------------------|------|----------|---------|---------|---------|----|
| CENABLE | CLD1                | CLD0 | SVENABLE | ACTRLD1 | ACTRLD0 | FCOMPOE | 保留 |
| RW_0    | RW_0 RW_0 RW_0 RW_0 |      | RW_0     | RW_0    | RW_0    | R_0     |    |
|         |                     |      | 7~0      |         |         |         |    |
| 保留      |                     |      |          |         |         |         |    |
|         |                     |      |          |         |         |         |    |

R\_0

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不定, S=仅可置位, W1C=写 1 清除;

|           | CENABLE: 比较使能位;                  |
|-----------|----------------------------------|
| 位 15      | 0: 禁止比较操作;                       |
|           | 1: 使能比较操作;                       |
|           | CLD1/CLD0:比较寄存器 CMPRx 重新加载条件;    |
|           | 00: 定时器 1 下溢加载;                  |
| 位 14~位 3  | 01: 定时器 1 下溢或周期加载;               |
|           | 10: 立即加载;                        |
|           | 11: 保留;                          |
|           | SVENABLE:空间向量 PWM 模式使能位;         |
| 位 12      | 0: 禁止空间向量 PWM 模式;                |
|           | 1: 使能空间向量 PWM 模式;                |
|           | ACTRLD1/ACTRLD0 : 方式控制寄存器重新加载条件; |
|           | 00: 定时器 1 下溢;                    |
| 位 11~位 10 | 01: 定时器 1 下溢或周期匹配;               |
|           | 10: 立即;                          |
|           | 11: 保留;                          |
|           | FCOMPOE: 比较输出使能位;                |
| 位 9       | 0: PWM 输出引脚为高阻态,即禁止;             |
|           | 1: PWM 输出引脚未处于高阻态,即使能;           |
| 位8~位0     | 保留                               |

## 2. 比较方式控制寄存器 ACTRA—7413h

| 15                                       | 14       | 13                | 12               | 11           | 10           | 9        | 8        |
|------------------------------------------|----------|-------------------|------------------|--------------|--------------|----------|----------|
| SVRDIR                                   | D2       | D1                | D0               | CMP6ACT1     | CMP6ACT0     | CMP5ACT1 | CMP5ACT0 |
| RW_0                                     | RW_0     | RW_0              | RW_0             | RW_0         | RW_0         | RW_0     | RW_0     |
|                                          |          |                   |                  |              |              |          |          |
| 7                                        | 6        | 5                 | 4                | 3            | 2            | 1        | 0        |
| CMP4ACT1                                 | СМР4АСТ0 | CMP3ACT1          | СМРЗАСТО         | CMP2ACT1     | CMP2ACT0     | CMP1ACT1 | CMP1ACT0 |
| RW_0                                     | RW_0     | RW_0              | RW_0             | RW_0         | RW_0         | RW_0     | RW_0     |
| `+ · · · · · · · · · · · · · · · · · · · | W        | `=r^ ^ <i>= -</i> | - + ∨ <i>=</i> - | <del>+</del> | TEM /- MAG 5 | □ 1 注7人。 |          |

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不定, S=仅可置位, W1C=写 1 清除;



# 

| Advancechi | ADWITOFUSAT Digital Signal Processor vi | .4                                |  |  |  |  |  |  |  |  |
|------------|-----------------------------------------|-----------------------------------|--|--|--|--|--|--|--|--|
|            | SVRDIR:空间矢量 PWM 旋转方向,仅用于空间矢量 PWM 输出的产生; |                                   |  |  |  |  |  |  |  |  |
| 位 15       | 0: 正向 (CCW);                            |                                   |  |  |  |  |  |  |  |  |
|            | 1: 反向 (CW) ;                            |                                   |  |  |  |  |  |  |  |  |
| 位 14~位 12  | D2~D0:基本的空间矢量位,仅用于空间矢量 PWM 输出的产生;       | D2~D0:基本的空间矢量位,仅用于空间矢量 PWM 输出的产生; |  |  |  |  |  |  |  |  |
|            | CMP6ACT1/0:引脚 PWM6/IOPB3 上的比较输出方式选择位;   |                                   |  |  |  |  |  |  |  |  |
| 位 11~位 10  | 00 : 强制低 01 : 低有效;                      |                                   |  |  |  |  |  |  |  |  |
|            | 10 : 高有效 11 : 强制高;                      |                                   |  |  |  |  |  |  |  |  |
|            | CMP5ACT1/0:引脚 PWM5/IOPB2 上的比较输出方式选择位;   |                                   |  |  |  |  |  |  |  |  |
| 位 9~位8     | 00 : 强制低 01 : 低有效;                      |                                   |  |  |  |  |  |  |  |  |
|            | 10 : 高有效 11 : 强制高;                      |                                   |  |  |  |  |  |  |  |  |
|            | CMP4ACT1/0:引脚 PWM4/IOPB1 上的比较输出方式选择位;   |                                   |  |  |  |  |  |  |  |  |
| 位7~位6      | 00 : 强制低 01 : 低有效;                      |                                   |  |  |  |  |  |  |  |  |
|            | 10 : 高有效 11 : 强制高;                      |                                   |  |  |  |  |  |  |  |  |
|            | CMP3ACT1/0:引脚 PWM6/IOPB0 上的比较输出方式选择位;   |                                   |  |  |  |  |  |  |  |  |
| 位 5~位 4    | 00 : 强制低 01 : 低有效;                      |                                   |  |  |  |  |  |  |  |  |
|            | 10 : 高有效 11 : 强制高;                      |                                   |  |  |  |  |  |  |  |  |
|            | CMP2ACT1/0:引脚 PWM2/IOPA7 上的比较输出方式选择位;   |                                   |  |  |  |  |  |  |  |  |
| 位3~位2      | 00 : 强制低 01 : 低有效;                      |                                   |  |  |  |  |  |  |  |  |
|            | 10 : 高有效 11 : 强制高;                      |                                   |  |  |  |  |  |  |  |  |
|            | CMP1ACT1/0:引脚 PWM1/IOPA6 上的比较输出方式选择位;   |                                   |  |  |  |  |  |  |  |  |
| 位 1 ~ 位 0  | 00 : 强制低 01 : 低有效;                      |                                   |  |  |  |  |  |  |  |  |
|            | 10 : 高有效 11 : 强制高;                      |                                   |  |  |  |  |  |  |  |  |

# 14.5 事件管理器模块 EM1 脉宽调制电路

事件管理器 EM1 可同时产生最多 8 路 PWM 波形 (输出)。带有可编程死区的三 个完全比较单元组成的三组独立对 (六个输出 PWM1~6), PWM7/PWM8 单独输出至 引脚。

## 14.5.1 PWM 特性

PWM 特性如下:

• 16 位寄存器



- 每组 PWM 输出的可编程死区计数器范围 0~255
- 最小死区宽度为 25 ns
- 按照需要通过 PWM 频率摆动来改变的 PWM 载波频率
- 可在每个 PWM 周期结束之后改变所需的 PWM 脉冲宽度
- 功率驱动保护中断
- 波形发生器电路,可编程生成不对称、对称以及四象限向量的 PWM 波形
- 使用比较和周期寄存器的自动重新载入可大大减少 CPU 的开销

## 14.5.2 PWM 相关寄存器

### 1. 死区定时器控制寄存器 DBTCONA—7415h

| 15            | 14            | 13       | 12      | 11     | 10                                      | 9         | 8    |
|---------------|---------------|----------|---------|--------|-----------------------------------------|-----------|------|
| DBT7          | DBT6          | DBT5     | DBT4    | DBT3   | DBT2                                    | DBT1      | DBT0 |
| RW_0          | RW_0          | RW_0     | RW_0    | RW_0   | RW_0                                    | RW_0      | RW_0 |
|               |               |          |         |        |                                         |           |      |
| 7             | 6             | 5        | 4       | 3      | 2                                       | 1         | 0    |
| EDBT3         | EDBT2         | EDBT1    | DBTPS2  | DBTPS1 | DBTPS0                                  | 保留        | 保留   |
| RW_0          | RW_0          | RW_0     | RW_0    | RW_0   | RW_0                                    | RW_0      | R_0  |
| 注, D_=T;= \// | _ <del></del> | EIA 0_€/ | ÷/= v_= | 冷冻天空 0 | ·_//\_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | W1C-〒1 津陸 |      |

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不定, S=仅可置位, W1C=写 1 清除;

| 位 15~位 8 | DBT7~DBT0: 死区定时器周期。这8位定义了3个8位死区定时器的周期值;        |  |  |  |  |  |  |
|----------|------------------------------------------------|--|--|--|--|--|--|
|          | EDBT3: 死区定时器 3 使能位(用于比较单元 3 的 PWM5 和 PWM6 引脚); |  |  |  |  |  |  |
| 位 7      | 0: 禁止;                                         |  |  |  |  |  |  |
|          | 1: 使能;                                         |  |  |  |  |  |  |
|          | EDBT2: 死区定时器 2 使能位(用于比较单元 2 的 PWM3 和 PWM4 引脚); |  |  |  |  |  |  |
| 位 6      | 0: 禁止;                                         |  |  |  |  |  |  |
|          | 1: 使能;                                         |  |  |  |  |  |  |
|          | EDBT1: 死区定时器 1 使能位(用于比较单元 1 的 PWM1 和 PWM2 引脚); |  |  |  |  |  |  |
| 位 5      | 0: 禁止;                                         |  |  |  |  |  |  |
|          | 1: 使能;                                         |  |  |  |  |  |  |
|          | DBTPS2~DBTPS0: 死区时间预定标因子;                      |  |  |  |  |  |  |
|          | 000 : X/1 ; 001 X/2;                           |  |  |  |  |  |  |
| 位 4~位 2  | 010 : X/4 ; 011 X/8;                           |  |  |  |  |  |  |
|          | 100 :X/16; 101 X/32;                           |  |  |  |  |  |  |



|           | 8 8                   |
|-----------|-----------------------|
|           | 110 :X/64; 111 X/128; |
| 位 1 ~ 位 0 | 保留;                   |

## 14.6 事件管理器模块 (EM1) 捕获单元

捕获单元可以记录捕获输入引脚上的电平变换。当在捕获输入引脚 CAPx (x = 1, 2, 或者 3) 上检测到指定的电平变化时,选定的通用定时器计数器的值就会被捕捉并存储在两级深度的 FIFO 堆栈内。捕获单元由三个捕捉电路(CAP1、CAP2、CAP3)组成。

## CAP 模块包括下列特性:

- 一个 16 位捕捉控制寄存器, CAPCONx (R/W)
- 一个 16 位捕捉 FIFO 状态寄存器, CAPFIFOx
- 选择通用定时器 1/2 作为时基
- 3 个 2 级深度的 16 位 FIFO 堆栈, 每个堆栈用于一个比较单元
- 3 个捕获输入可从 CAP1/2/3 引脚引入,也可通过电压比较器 1/2/3 产生。(所有输入与器件 CPU 时钟同步。为了捕捉到一个转换,输入必须在其当前的电平状态保持至少两个时钟的上升沿。CAP1/2 也可被用作到 QEP 电路的 QEP 输入)
- 用户指定跳变(上升边沿、下降边沿,或者双沿)检测;
- 三个可屏蔽中断,分别对应每个捕捉单元;
- CAP1 和 CAP2 共用定时器 1 或 2, CAP3 单独使用定时器 1 或 2。

#### 14.6.1 事件管理器模块(EM1)捕获单元控制寄存器

#### 1) 捕获控制寄存器 CAPCONA—7420h

| 15     | 14~13    | 12     | 11   | 10      | 9        | 8         |
|--------|----------|--------|------|---------|----------|-----------|
| CAPRES | CAP12EPN | CAP3EN | 保留   | CAP3SEL | CAP12SEL | CAP3TOADC |
| W-0    | RW-0     | RW-0   | RW-0 | RW-0    | RW-0     | RW-0      |



V1.4

 7
 6
 5
 4
 3
 2
 1
 0

 CAP1DEG
 CAP1DEG
 CAP2DEG
 CAP3DEG
 CAP3DEG
 保留
 保留

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不定, S=仅可置位, W1C=写 1 清除;

|         | CAPRES: 捕获复位,该位只能进行写访问,读访问总位 0。使用捕获功能时,不需要向该位写 1; |  |  |  |  |  |  |  |  |
|---------|---------------------------------------------------|--|--|--|--|--|--|--|--|
| 位 15    | 0: 将所有捕获单元和正交编码电路的寄存器清 0;                         |  |  |  |  |  |  |  |  |
|         | 1: 无操作;                                           |  |  |  |  |  |  |  |  |
|         | CAP12EPN: 表示捕获单元 1 和 2 的控制位;                      |  |  |  |  |  |  |  |  |
|         | 00:禁止捕获 1 和 2,FIFO 堆栈保持内容不变;                      |  |  |  |  |  |  |  |  |
| 位 14-13 | 01: 使能捕获单元 1 和 2;                                 |  |  |  |  |  |  |  |  |
|         | 10: 保留;                                           |  |  |  |  |  |  |  |  |
|         | 11: 保留;                                           |  |  |  |  |  |  |  |  |
|         | CAP3EN: 表示捕获单元 3 的控制位;                            |  |  |  |  |  |  |  |  |
| 位 12    | 0: 禁止捕获单元 3, FIFO 堆栈保持内容不变;                       |  |  |  |  |  |  |  |  |
|         | 1: 使能捕获单元 3;                                      |  |  |  |  |  |  |  |  |
| 位 11    | 保留;                                               |  |  |  |  |  |  |  |  |
|         | CAP3SEL: 捕获单元 3 的通用定时器选择位。                        |  |  |  |  |  |  |  |  |
| 位 10    | 0: 通用定时器 2;                                       |  |  |  |  |  |  |  |  |
|         | 1: 通用定时器 1;                                       |  |  |  |  |  |  |  |  |
|         | CAP12SEL: 捕获单元 1,2 的通用定时器选择位。                     |  |  |  |  |  |  |  |  |
| 位 9     | 0: 通用定时器 2;                                       |  |  |  |  |  |  |  |  |
|         | 1: 通用定时器 1;                                       |  |  |  |  |  |  |  |  |
|         | CAP3TOADC: 捕获单元 3 事件启动 ADC 转换位;                   |  |  |  |  |  |  |  |  |
| 位 8     | 0: 无操作                                            |  |  |  |  |  |  |  |  |
|         | 1:当 CAP3INT 标志置位时,触发 AD 转换;                       |  |  |  |  |  |  |  |  |
|         | CAP1DEG:捕获单元 1 的边缘检测位:                            |  |  |  |  |  |  |  |  |
| 位7~位6   | 00 : 无检测                                          |  |  |  |  |  |  |  |  |
|         | 10 :检测下降沿 11 :检测两个边沿;                             |  |  |  |  |  |  |  |  |
|         | CAP2DEG:捕获单元 2 的边缘检测位:                            |  |  |  |  |  |  |  |  |
| 位 5~位 4 | 00 : 无检测                                          |  |  |  |  |  |  |  |  |
|         | 10 : 检测下降沿   11 : 检测两个边沿;                         |  |  |  |  |  |  |  |  |
|         | CAP3DEG:捕获单元 3 的边缘检测位:                            |  |  |  |  |  |  |  |  |
| 位3~位2   | 00 : 无检测                                          |  |  |  |  |  |  |  |  |
|         | 10 : 检测下降沿   11 : 检测两个边沿;                         |  |  |  |  |  |  |  |  |
| 位1~位0   | 保留;                                               |  |  |  |  |  |  |  |  |

## 2) 捕获 FIFO 状态控制寄存器 CAPFIFO—7422h

| 15~14 | 13~12    | 11~10    | 9~8      | 7~0 |
|-------|----------|----------|----------|-----|
| 保留    | CAP3FIFO | CAP2FIFO | CAP1FIFO | 保留  |



R\_0 RW\_0

RW\_0

 $RW_0$ 

 $R_0$ 

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不定, S=仅可置位, W1C=写 1 清除;

| 位 15~位 14 | 保留;                       |
|-----------|---------------------------|
|           | 表示捕获单元 3 的 FIFO 状态位;      |
|           | 00: 空;                    |
| 位 13~位 12 | 01:已有一个值压入堆栈;             |
|           | 10:已有两个值压入堆栈;             |
|           | 11:已有两个值,捕获另一个值,丢弃首个压入的值; |
|           | 表示捕获单元 2 的 FIFO 状态位;      |
|           | 00: 空;                    |
| 位 11~位 10 | 01:已有一个值压入堆栈;             |
|           | 10:已有两个值压入堆栈;             |
|           | 11:已有两个,捕获另一个值,丢弃首个压入的值;  |
|           | 表示捕获单元 1 的 FIFO 状态位;      |
|           | 00: 空;                    |
| 位 9~位 8   | 01:已有一个值压入堆栈;             |
|           | 10:已有两个值压入堆栈;             |
|           | 11:已有两个,捕获另一个值,丢弃首个压入的值;  |
| 位7~位0     | 保留;                       |

### 3) 六个 FIFO 寄存器

| , , , , , |       |                     |
|-----------|-------|---------------------|
| 名称        | 地址    | 说明                  |
| CAP1FIFO  | 7423h | CAP1 的 FIFO 堆栈顶层寄存器 |
| CAP2FIFO  | 7424h | CAP2 的 FIFO 堆栈顶层寄存器 |
| CAP3FIFO  | 7425h | CAP3 的 FIFO 堆栈顶层寄存器 |
| CAP1FBOT  | 7427h | CAP1 的 FIFO 堆栈底层寄存器 |
| CAP2FBOT  | 7428h | CAP2 的 FIFO 堆栈底层寄存器 |
| CAP3FBOT  | 7429h | CAP3 的 FIFO 堆栈底层寄存器 |

# 14.7 正交编码脉冲(QEP) 电路

两个捕获输入引脚 CAP1 和 CAP2 复用片内 QEP 电路,用于处理正交编码脉冲。 当正交脉冲序列的方向或者边沿被检测到时,为了保证这些输入信号在芯片内部完全同步,通用定时器 2 随着两个输入信号(输入脉冲的四倍频)的上升和下降沿递增或递减。



# 15 模数转换器 ADC

## 15.1 ADC 的特性

- 12 位模数转换电路
- 2 路采样保持单元
- 模拟输入: 0.0V 至 3.0V (高于 3.0V 输出满量程值,超过规格书定义端口耐压限值 将对器件造成不可逆的损伤)
- 14MHz ADC 时钟, 最快转换速率: 1 MSPS, 转换时间为 1000ns
- 16 个采样通道(其中 A3 通道未引出引脚,连接至片上温度传感器)
- 自动排序功能在单次转换序列最多可连续 16 次"自动转换",每次转换通道可通过 软件配置 16 个输入通道中的任意一个。
- 2个的 8 态排序器模式可运行在双排序器模式 (SEQ1 和 SEQ2), 或级联为一个 16 态的 SEQ 排序器模式。
- 具有存储转换值的 16 个结果寄存器 (RESULTO~RESULT15 可独立寻址) 。

## 输入模拟电压对应的数字值由以下公式得出:

$$\begin{aligned} \textit{digital value} &= 0 & \textit{input} \leq 0 \\ \\ \textit{digital value} &= 4096 \times \frac{\textit{Input Analog Value} - \textit{LO}}{3} & \textit{0} < \textit{input} < 3 \\ \\ \textit{digital value} &= 4095 & \textit{input} \geq 3 \end{aligned}$$

注: 所有分数值均截断(小数位都舍去, 只取整数位)。

- 转换开始(SOC) 序列源的多个触发器:
  - 一 软件立即触发
  - 一 事件管理器 1 内部事件源
  - ADCSOC 外部引脚



- 灵活的中断控制,支持每个序列结束(EOS)触发中断或每间隔一个 EOS 触发中断。
- 排序器可运行在"启/停"模式,支持多个时间排序的触发源转换同步。
- EM1 定时器 T1 相关联的两个 SOC 事件源可独立触发双排序器模式。
- ADC 偏移误差带出厂校准
- ADC 增益误差带出厂校准
- ADC 时钟频率可软件配置
- ADC 采样时间窗口可配置

ADC 模块集成一个 14MHz 的 ADC 时钟,可支持 1000ns 快速转换速度。带载 16个输入通道,分别为 A0~A7 和 B0~B7 两组,这些通道可被配置为用于事件管理器 1 的独立 8 状态排序器或一个级联的 16 状态排序器。尽管有多个输入通道和 2 个排序器,但 ADC 模块仅存在一个转换器电路。2 个 8 状态排序器或级联的 16 状态排序器可自动对一系列转换定序,每次转换可通过模拟 MUX 选择 16 个输入通道中的任何一个。在每个排序器上,一旦转换完成,所选通道的转换结果存储在对应 RESULTx 寄存器中。系统可使用自动定序功能多次转换同一输入通道,实现过采样的算法。此算法可提供比传统的单一采样转换结果更高的分辨率。

# 15.2 ADC 模块概述

如图 15.1 所示,该系列器件的 ADC 系统包括 12 位 ADC 转换电路,通道选通开关以及排序器 SEQ1 和 SEQ2 或 SEQ。



其中,排序器 SEQ1 和 SEQ2 或 SEQ 是 ADC 系统的主要控制单元,负责切换不同的通道将数据送入模拟 AD 核进行转化,结果 MUX 负责切换不同的结果寄存器将 ADC 转换的数字码送入对应的结果寄存器当中。ADCINA3 通道固定连接内部温度传感器输出端。

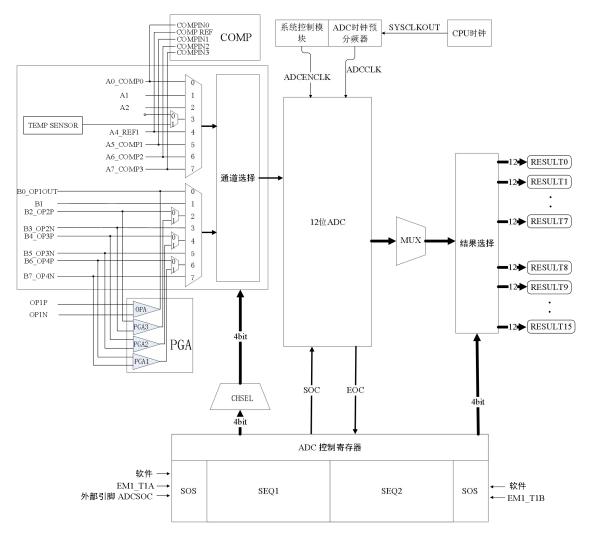



图 15.1 ADC 系统结构框图

建议在所有电源引脚上使用外部去耦合电容器。ADC 电源的引脚连线如图 15.2 所示,设计要达到规格书定义的 ADC 精度,电路板布局合理性非常关键。为尽可能达到最佳效果,到 ADCINxx 引脚的走线不应与数字信号通道靠的太近。这是为了最大程度地降低耦合到 ADC 输入路径的数字线路的开关噪声。此外,必须使用适当的隔离技术,将ADC 模块电源引脚 VCCA 与数字电源隔离。未使用的 ADC 输入引脚应该连接模拟地。



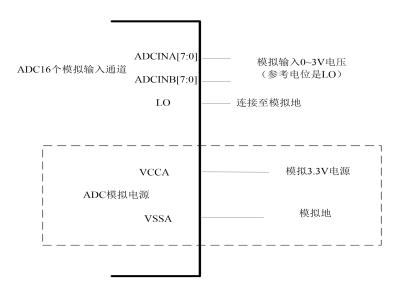



图 15.2 ADC 电源引脚连接示例

## 15.3 自动排序器

图 15.3 是双排序模式下自动排序原理框图,图 15.4 是级联模式下自动排序原理框图。该 ADC 排序器由 2 个独立的 8 状态排序器(SEQ1 和 SEQ2)组成,SEQ1 和 SEQ2 也可以级联成一个 16 状态排序器(SEQ)。这两种模式下,ADC 都能对一系列转换进行自动定序,即每当 ADC 接收到转换开始请求时,它可以自动执行多个转换。对于每次需要转换通道,可通过模拟 MUX 选择 16 个可用输入通道中的任意一个。转换之后,所选通道采样转换的数值将存储在对应的结果寄存器(ADCRESULTn)中。(第一个结果存储在 RESULTO/RESULT8 中,第二个结果存储在 RESULT1/RESULT9 中,依此类推)。还可以对同一通道进行多次采样,实现"过采样"算法,此方式比传统的单采样转换结果可获得更高的分辨率。



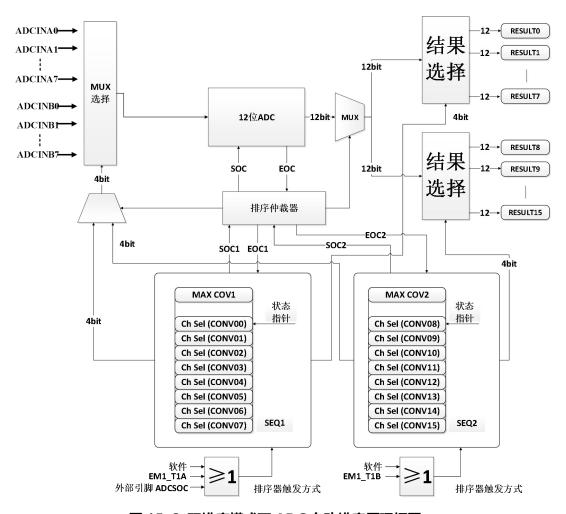



图 15.3 双排序模式下 ADC 自动排序原理框图



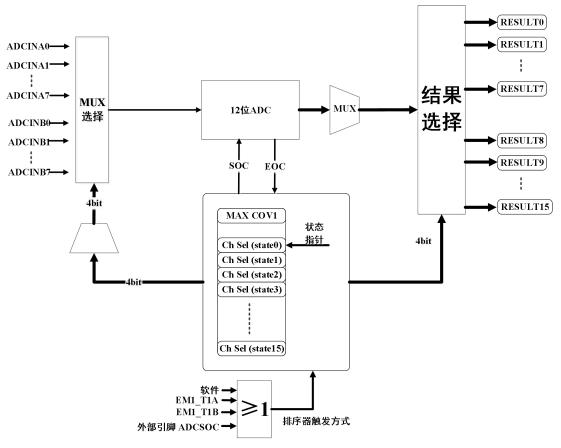
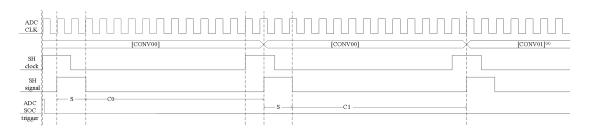



图 15. 4 级联模式下 ADC 自动排序原理框图


注:

在双排序器顺序采样模式中,一旦完成当前活动排序器启动的序列,则将执行挂起的来自其它排序器 SOC 请求。例如,假设出现来自 SEQ1 的 SOC 请求时,A/D 转换器正忙于处理 SEQ2 的请求。A/D 转换器将在完成正在处理的 SEQ2 请求之后,立即开始执行 SEQ1 的请求。如果 SEQ1 和 SEQ2 的 SOC 请求都为挂起状态,则 SEQ1 的 SOC 具有优先权。假设 A/D 转换器正忙于处理 SEQ1 的请求。在此过程中,同时出现了来自 SEQ1 和 SEQ2 的 SOC 请求。当 SEQ1 完成其活动序列时,将立即执行 SEQ1 的 SOC 请求,SEQ2 的 SOC 请求继续保持挂起状态。

ADC 可以运行于顺序采样模式。对于每次转换,当前 CONVxx 位字段定义了将要采样和转换的通道。在顺序采样模式中,CONVxx 的所有 4 位用于定义输入通道。 MSB 用于定义与输入通道相关联的采样保持缓冲器,三个 LSB 用于定义偏移。例如,如 CONVxx 包含值 0101b,则 ADCINA5 为选定的输入通道。如果它包含值 1011b,则 ADCINB5 为选定的输入通道。



## 15.3.1 顺序采样模式



注:

S——ADC 的真正采样窗口(宽度最少为2个ADCCLK 周期)

C1——ADC 转换数据时间长度(结果寄存器刷新数据所需时长)

ADC 通道由[CONV00] 4 位寄存器选择; CONV00 对应 SEQ1, CONV08 对应 SEQ2。

图 15.5 顺序采样模式的时序

表 15.1 不同工作模式 SEQ1 和 SEQ2 比较

| 特性                             | 单个8态           | 单个8态                   | 级联 16 态               |  |
|--------------------------------|----------------|------------------------|-----------------------|--|
| 付注                             | 排序器 #1(SEQ1)   | 排序器 #2 (SEQ2)          | 排序器 (SEQ)             |  |
| ####### (COC) ### <del>*</del> | 软件、EM1_T1A、外部引 | <i>t\</i> -/₩ ΓΝΛ1 Τ1D | 软件、EM1_T1A、EM1_T1B、外部 |  |
| 特换开始 (SOC) 触发方式                | 脚              | 软件、EM1_T1B             | 引脚                    |  |
| 最大自动转换数 (序列长                   | 8              | 0                      | 16                    |  |
| 度)                             | 0              | 8                      | 16                    |  |
| 仲裁优先级                          | 高              | 低                      | 不适用                   |  |
| ADC 转换结果寄存器位置                  | 0~7            | 8~15                   | 0 - 15                |  |
| CHSELSEQn 位字段指定                | CONV00~CONV07  | CONV08~CONV15          | CONV00 - CONV15       |  |

## 后续将排序器状态, 定义统一如下:

SEQ1: CONV00 - CONV07

SEQ2: CONV08 - CONV15

SEQ : CONV00 - CONV15

在 ADC 输入通道选择定序控制寄存器 (CHSELSEQn) 中的 CONVxx 位字段定义了为每个定序的转换选择的模拟输入通道。 CONVxx 是一个 4 位字段,它指定 16 个用于转换的通道中的任一个。由于在使用两个排序器先后一起工作时,序列中最多可有 16 次转换,因此提供了 16 个此类 4 位字段(CONV00-CONV15),且分布在 4 个 16 位寄存器 (ADCCHSELSEQ1-ADCCHSELSEQ4) 中。 CONVxx 位的设置值可以是 0 ~

15 的任何值。可按任何所需的顺序选择模拟通道,并可多次选择同一诵道。

```
示例 1.顺序采样双排序器模式
示例初始化:
AdcRegs.ADCTRL3.bit.SMODE SEL =0x0102; // 设置顺序采样、双排序模式,采样窗口 2ADCCLK
周期, ADCCLK 为 CPU 时钟的 1/4
AdcRegs.MAXCONV.all = 0x0077:
                                    // 每个排序器 8 个转换 (共 16 个)
AdcRegs.CHSELSEQ1.bit.CONV00 = 0x0;
                                     // 设置从 ADCINAO 转换
AdcRegs.CHSELSEQ1.bit.CONV01 = 0x1;
                                     // 设置从 ADCINA1 转换
                                     // 设置从 ADCINA2 转换
AdcRegs.CHSELSEQ1.bit.CONV02 = 0x2;
AdcRegs.CHSELSEQ1.bit.CONV03 = 0x3;
                                     // 设置从 ADCINA3 转换
AdcRegs.CHSELSEQ2.bit.CONV04 = 0x4;
                                     // 设置从 ADCINA4 转换
AdcRegs.CHSELSEQ2.bit.CONV05 = 0x5;
                                     // 设置从 ADCINA5 转换
AdcRegs.CHSELSEQ2.bit.CONV06 = 0x6;
                                     // 设置从 ADCINA6 转换
AdcRegs.CHSELSEQ2.bit.CONV07 = 0x7;
                                     // 设置从 ADCINA7 转换
AdcRegs.CHSELSEQ3.bit.CONV08 = 0x8;
                                     // 设置从 ADCINBO 转换
AdcRegs.CHSELSEQ3.bit.CONV09 = 0x9;
                                     // 设置从 ADCINB1 转换
                                     // 设置从 ADCINB2 转换
AdcRegs.CHSELSEQ3.bit.CONV10 = 0xA;
                                     // 设置从 ADCINB3 转换
AdcRegs.CHSELSEQ3.bit.CONV11 = 0xB;
AdcRegs.CHSELSEQ4.bit.CONV12 = 0xC;
                                     // 设置从 ADCINB4 转换
AdcRegs.CHSELSEQ4.bit.CONV13 = 0xD;
                                     // 设置从 ADCINB5 转换
                                    // 设置从 ADCINB6 转换
AdcRegs.CHSELSEQ4.bit.CONV14 = 0xE;
AdcRegs.CHSELSEQ4.bit.CONV15 = 0xF;
                                   // 设置从 ADCINB7 转换
如果已执行 SEQ1 和 SEQ2 (先后两条语句, 间隔 2 个系统周期, 将 ADCTRL2 的 Bit13 和 Bit5 置为 "1"),
则结果将存入以下 RESULT 寄存器中:
ADCINA0 -> RESULT0
ADCINA1 -> RESULT1
ADCINA2 -> RESULT2
ADCINA3 -> RESULT3
ADCINA4 -> RESULT4
ADCINA5 -> RESULT5
ADCINA6 -> RESULT6
ADCINA7 -> RESULT7
ADCINBO -> RESULT8
ADCINB1 -> RESULT9
ADCINB2 -> RESULT10
ADCINB3 -> RESULT11
ADCINB4 -> RESULT12
ADCINB5 -> RESULT13
ADCINB6 -> RESULT14
ADCINB7 -> RESULT15
```

#### 15.3.2 不中断的自动排序模式

以下说明适用于 8 状态排序器(SEQ1 或 SEQ2)。在此模式中,SEQ1/SEQ2 可在单次定序会话中对任意通道自动排序 8 次转换(当级联模式或排序器先后一起使用时为 16 次)。此模式流程如图 15.5 所示。每次转换的结果存储在 8 个结果寄存器的其中一个(对 SEQ1 为 ADCRESULT0 ~ ADCRESULT7,对 SEQ2 为 ADCRESULT8 ~ ADCRESULT15)中。从最低地址向最高地址填充这些寄存器。

序列中的转换数由 MAX\_CONVn(ADCMAXCONV 寄存器中的 3 位字段或 4 位字段) 控制,并在自动定序转换会话开始时自动载入自动定序状态寄存器(ADCASEQSR)中的定序计数器状态位(SEQ\_CNTR[3:0])中。MAX\_CONVn 字段可为 0 - 7 范围内的值。当排序器从状态 CONV00 开始时,SEQ\_CNTR 位从其载入的值开始进行倒计数,并按顺序持续(CONV01、CONV02...以此类推)到 SEQ\_CNTR 变为 0 为止。在自动定序会话期间完成的转换数等于(MAX CONVn + 1)。

示例 2. 在双排序器模式下使用 SEQ1 进行转换

假设某个转换序列 SEQ1 进行 7 次转换(定序过程为转换输入 ADCINA2 和 ADCINA3 各两次,接着转换 ADCINA6、ADCINA7 和 ADCINB4),则应将 MAX\_CONV1 设置为 6,ADCCHSELSEQn 寄存器设置 为如表 15.2。

表 15.2 示例 2 中 CHSELSEQn 寄存器写入值

|       | Bits 15~12 | Bits 11~8 | Bits 7~4 | Bits 3~0 | -         |
|-------|------------|-----------|----------|----------|-----------|
| 70A3h | 3          | 2         | 3        | 2        | CHSELSEQ1 |
| 70A4h | Х          | 12        | 7        | 6        | CHSELSEQ2 |
| 70A5h | х          | Х         | Х        | х        | CHSELSEQ3 |
| 70A6h | х          | Х         | Х        | x        | CHSELSEQ4 |

注: 表中数值为十进制数, x 是不用考虑的数。

如图 15.6 为不间断自动排序模式下的转换流程图。



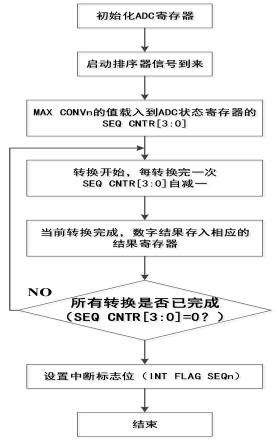



图 15.6 不间断的自动排序模式 ADC 转换流程图

当排序器接收到转换开始 (SOC) 触发时即启动转换。SOC 触发时同时加载 SEQ\_CNTR n 值。CHSELSEQ n 寄存器中设定的通道将按照预设定的顺序进行转换。每 完成一个通道转换后,SEQ\_CNTR n 值将自动减 1。当 SEQ\_CNTR n 值减小到 0 时,可能触发两种操作,操作结果与 ADCTRL1 寄存器中连续运行位(CONT RUN) 的状态相关。

当启用 CONT\_RUN 设置,转换序列将自动再次启动(即 SEQ\_CNTR n 重新加载 MAX\_CONV1 的原始值且 SEQ1 状态设置为 CONV00)。此时为避免数据覆盖,应确保在下一转换序列开始之前完成对结果寄存器的读取。ADC 电路设计了仲裁机制,以确保出现争议条件触发时不会破坏结果寄存器(CPU 对结果寄存器进行读操作时,ADC 模块同时尝试对结果寄存器的写操作)。

如果未启用 CONT\_RUN 设置,排序器将保持上一次转换序列的最后状态 (示例中为



CONV06) ,且 SEQ\_CNTR 继续保持为 0 值。要在下一个 SOC 触发时重复序列,必须在下一 SOC 之前使用 RST SEQ n 复位排序器。

因每次 SEQ\_CNTR 到达 0 时中断标志均产生,用户可以在中断服务子程序程 ISR 中手动复位排序器(对 ADCTRL2 寄存器中的 RST\_SEQn 位进行写 1 操作),操作后下一次 SOC 触发时 SEQ CNTR n 重新加载 MAX CONV1 值且使得 SEQn 状态复位到初始值(CONV00 对 SEQ1, CONV08 对 SEQ2)。此功能可实现排序器工作在"启/停"工作模式。

#### 15.3.3 排序器的启/停工作模式

除了不间断自动排序模式, SEQ1、SEQ2 或者 SEQ 中任意一个均可工作在停止/启动模式, 此模式可实现同步多个分时转换开始(SOC) 触发源。此模式类似于示例 2, 区别在于排序器完成第一个转换序列后,可重新触发并且不复位到初始状态 CONV00 (即在中断服务子程序内不复位该排序器)。因此, 当一个转换序列结束时, 排序器保持在当前转换状态。此模式下 ADCTRL1 寄存器中的连续运行位(CONT\_RUN) 必须设置为 0 (即禁用)。

示例 3.排序器的启/停操作

要求:使用触发源 1 (下溢)启动 3 次自动转换(如 I1、I2 和 I3),使用触发源 2 (定时周期)启动 3 次自动转换(如 V1、V2 和 V3)。触发源 1 与触发源 2 在时间上相差  $25\mu s$  ,并由事件管理器 EM1 的 T1A 和 T1B 输出。时序图如图 15.7 所示。此示例中仅使用了 SEQ1。

注:

触发源 1 和触发源 2 均可以选择 EM1 (EM1\_T1A)、外部引脚或软件的 SOC 信号。相同的触发源可以发生 2 次,以满足本例的双触发需要。同时应该注意不要因正在处理的序列而丢失多个 EM1 触发信号。详细可参考第 15.3.4 部分。

此例中将 MAX\_CONV1 的值设置为 2,ADC 输入通道选择排序控制寄存器 (CHSELSEQn) 设置如表 15.3 所示。

复位完成初始化后, SEQ1将等待触发源。首个触发信号发生时, 执行通道选择值为 CONV00(I1)、CONV01 (I2) 和 CONV02 (I3)的 3 次转换。之后 SEQ1 将在当前状态等待下一个触发源。25 微秒后第二个触发源



到达,SEQ1 将执行通道选择值为 CONV03 (V1)、CONV04 (V2) 和 CONV05 (V3)的 3 次转换。 两次触发源到来时,MAX\_CONV1 的值均自动加载到 SEQ\_CNTR n 中。如第二个触发源到来时,需要修改不同的转换数,则必须通过软件(在第二次触发前恰当的时间)完成 MAX\_CONV1 值的更改,否则,之前的加载值将被重新使用。可通过中断服务程序(ISR)实现在适当的时间修改 MAX\_CONV1 值。 第二次自动转换过程结束后,ADC 结果寄存器的值如表 15.4 所示。

此时 SEQ1 将保持在当前状态等待下一个触发源。用户可通过软件将 SEQ1 复位到状态 CONV00,并重复相同的触发源 1 和触发源 2 的转换任务。

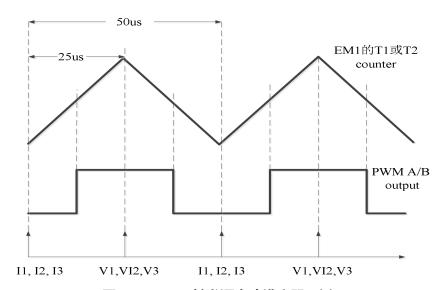



图 15.7 EM1 触发源启动排序器示例

表 15. 3 CHSELSEQ n 设定值 (MAX CONV1 设为 2)

|       | Bits 15~12 | Bits 11~8 | Bits 7~4 | Bits 3~0 |
|-------|------------|-----------|----------|----------|
| 70A3h | V1         | 13        | 12       | I1       |
| 70A4h | Х          | Х         | V3       | V2       |
| 70A5h | Х          | Х         | Х        | Х        |
| 70A6h | Х          | Х         | Х        | Х        |

CHSELSEQ1
CHSELSEQ2
CHSELSEQ3
CHSELSEQ4

表 15.4 第二次自动转换会话后的值

| 结果寄存器   | 结果寄存器数据 |  |
|---------|---------|--|
| RESULT0 | I1      |  |
| RESULT1 | 12      |  |
| RESULT2 | 13      |  |
| RESULT3 | V1      |  |
| RESULT4 | V2      |  |



|          | <u>. 8                                   </u> |
|----------|-----------------------------------------------|
| RESULT5  | V3                                            |
| RESULT6  | X                                             |
| RESULT7  | х                                             |
| RESULT8  | X                                             |
| RESULT9  | Х                                             |
| RESULT10 | х                                             |
| RESULT11 | х                                             |
| RESULT12 | х                                             |
| RESULT13 | х                                             |
| RESULT14 | х                                             |
| RESULT15 | х                                             |

## 15.3.4 输入触发源

每个排序器可配置一组触发源输入,且可独立使能或禁用。SEQ1、SEQ2 以及级联 SEQ 的有效输入触发源选择范围可参考表 15.5。

表 15.5 输入触发源

| SEQ1                | SEQ2              | 级联 SEQ              |
|---------------------|-------------------|---------------------|
| 软件触发(软件 SOC)        | 软件触发(软件 SOC)      | 软件触发 (软件 SOC)       |
| EM1_T1A (T1A SOC)   | EM1_T1B (T1B SOC) | EM1_T1B (T1B SOC)   |
|                     |                   | EM1_T1A (T1A SOC)   |
| 外部 SOC 引脚 (ADC SOC) |                   | 外部 SOC 引脚 (ADC SOC) |

#### 注:

- SOC 触发源可在排序器处于空闲状态时启动自动转换序列。空闲状态是指排序器处于接收触发源之前的CONV00,或者处于转换序列完成时(即 SEQ\_CNTR 计数到 0 时)排序器所处的状态。
- 如果在执行当前转换序列时出现另一个 SOC 触发源,则它将对 ADCTRL2 寄存器中的 SOC\_SEQ n 位写 1 (此位在上一转换序列开始时已被清除)。之后再发生的 SOC 触发源将丢失(即当 SOC\_SEQ n 位已被置 1 (SOC 挂起),之后的触发源将被忽略)。
- 触发源到来时,排序器不能在序列中间停止或中断。程序必须等待序列结束(EOS)或启动排序器复位,此时排序器将立即返回到空闲起始状态(SEQ1处于CONV00; SEQ2处于CONV08)。
- 当 SEQ1/2 用于级联模式时,进入 SEQ2 的触发源将被忽略,而 SEQ1 的触发源有效。此时级联模式可看作是 16 态而非 8 态的 SEQ1。

## 15.3.5 排序转换期间的中断操作

排序器可在两种工作模式下产生中断。中断模式可由 ADCTRL2 寄存器的中断模式使能控制位配置。示例 3 展示了中断模式 1 和 2 在不同工作场景下的用途。



## 情形 1: 第一个序列和第二个序列中的采样数不相等

- 模式 1 中断操作(即在每次 EOS 时发起中断请求)
- 1. 将 MAX CONVn 写入 1 并完成排序器初始化, 转换 I1 和 I2 通道。
- 2. 在"a"中断时刻, 软件将 MAX CONVn 更改为 2, 以转换 V1、V2 和 V3 通道。
- 3. 在 "b "中断时刻, 执行以下操作:
- a. 再次将 MAX CONVn 更改为 1,以转换 I1 和 I2 通道。
- b. 从 ADC 结果寄存器中读取 I1、I2、V1、V2 和 V3 值。
- c. 排序器复位。
- 4. 重复步骤 2 和步骤 3。

注:每次 SEQ CNTR 到 0 中断标志均被置位,且进入中断服务子程序。

## 情形 2: 第一个序列和第二个序列中的采样数相等

- 模式 2 中断操作 (即每隔一个 EOS 信号产生中断请求)
- 1. 将 MAX CONVn 设置为 2 并初始化排序器, 以转换 I1、I2 和 I3 (或 V1、V2 和 V3)。
- 2. 在 "b" 和 "d" 中断时刻处,将执行下述操作:
- a. 从 ADC 结果寄存器中读取值 I1、I2、I3、V1、V2 和 V3。
- b. 排序器被复位。
- 3. 重复步骤 2。

注意:每次 SEQ CNTR 到达 0 时中断标志位都被置 1,即 ADC 完成转换 I1、I2 和 I3 或完成转换 V1、V2 和 V3。而且仅当转换完 V1、V2 和 V3 之后才会产生 EOS,也即产生中断。

## **情形 3**: 第一个序列和第二个序列中的采样数相等(带有空读取操作)

• 模式 2 中断操作(即每隔一个 EOS 信号产生中断请求)



## 进版电子 Advancechip ADM16F03A1 Digital Signal Processor

- 1. 将 MAX\_CONVn 配置为 2 并初始化排序器,以转换 I1、I2 和 x (虚拟采样)。
- 2. 在 ISR "b" 和 "d" 处, 将执行下述操作:
- a. 从 ADC 结果寄存器读取值 I1、I2、x、V1、V2 和 V3。
- b. 排序器被复位。
- 3. 重复步骤 2。

注意, 第一个序列的第三采样 x 为虚拟采样, 而并非必须项。然而为最大程度地降低 ISR 开销和 CPU 干预,可以充分利用模式 2 的每隔一个中断请求的特性。



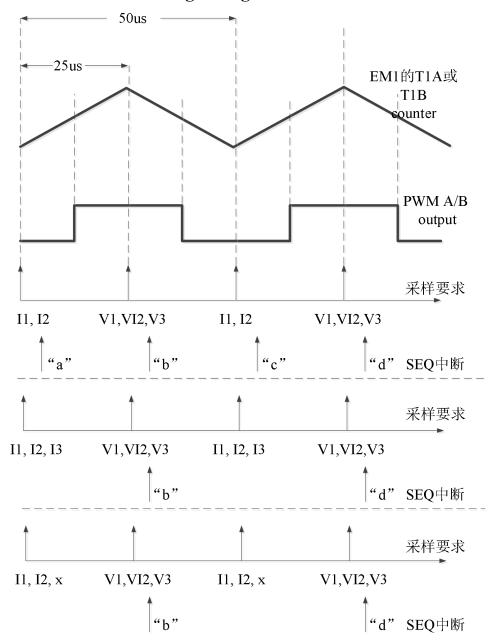



图 15.8 多次排序转换之间的中断操作

#### 15.4 ADC 时钟预分频

如图 15.9 所示, ADCCLK 为 ADC 模拟模块的主时钟, SH clock 为采保时钟 (其中高电平区间代表 ADC 的采样窗口时长)。ADCCLKPS3~0 位为 ADC 时钟预分频控制位, ACQPS3~0 位为 ADC 采样窗口调节控制位。



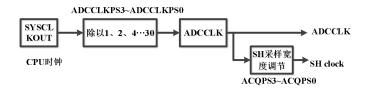



图 15.9 ADC 时钟预分频

#### 15.5 ADC 校准

ADC 出厂校准数据会在器件上电后自动存入到 CALIBRATION 寄存器。此后,每次 ADC 正常转换的数字码值经过补偿偏移误差后送入结果寄存器中。

15 14 12 8 13 11 10 D9 D8 D7 D6 D5 D4 D3 D2 7 6 4 3 2 1 0 5 D1 D0 0 0 0 0 0 0

表 15.6 CALIBRATION 校准寄存器—70B8h

#### 15.6 片内温度传感器

温度传感器可用于测试器件结温,传感器输出连接到 ADCINA3 通道, ADCCTL1 的位7 (REG\_T\_PWD) 控制温度传感器的上电或断电。A3 通道除与内部温度传感器连接外,并未引到芯片引脚。

#### 15.6.1 温度传感器传递函数

温度传感器的输出经 ADCINA3 通道采样,其采样值随着结温的升高而增加。偏移误差定义为 0℃时采样 LSB 码值,如图 15.10 所示。该信息可用于将传感器采样 ADC 码值转换为温度单位。需通过软件运算转换为温度。在对温度传感器进行采样时,ADC 必须满足"温度传感器特性"表中的采集时间要求。

调用 0x752E 寄存器值作为 Slope, 温度的传递函数定义为:

$$Temp = \left(Sensor_{(D)} - Offset_{(D)}\right) \times \frac{Slope_{(D)}}{1024}$$

调用温度传感器特征值作为 Slope, 温度的传递函数定义为:

$$Temp = \left(Sensor_{(D)} - Offset_{(D)}\right) \times Slope_{(D)}$$

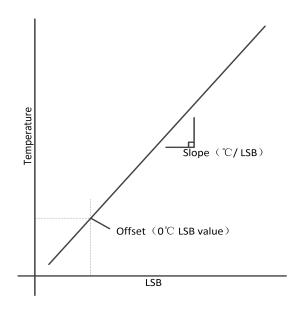



图 15.10 温度传感器传递函数

斜率和偏移详细介绍可参考 ADP16F03 数据手册中的电气特性部分,每个器件在出厂时均写入了独立校准的的斜率和偏移值,写入地址信息如下。

- 0x752E slope 斜率 (℃/LSB, 十进制乘以 1024 后, 转换为二进制数据存放于 此寄存器);
  - 0x752F offset 偏移 (0°C对应的 LSB 码值)

列出的值满量程范围为 3V,使用内部 ADC 基准电压模式会自动匹配此固定电压范围。

|               | 次13.7 温度包括指针            |     |             |    |        |  |  |
|---------------|-------------------------|-----|-------------|----|--------|--|--|
|               | 参数 <sup>(1)</sup>       | 最小  | 典型          | 最大 | 单位     |  |  |
| $t_{startup}$ | 启动时间                    |     |             | 1  | ms     |  |  |
| $t_{acq}$     | ADC 采集窗口时间              | 500 |             |    | ns     |  |  |
| $T_{slope}$   | 温度传感器测得的 ADC1 个 LSB 变化对 |     | 0.128(2)(3) |    | °C/LSB |  |  |
| 1 stope       | 应的温度变化值                 |     | 0.120       |    | C/LJD  |  |  |
| $T_{offset}$  | 在温度传感器读数为0°C时的ADC输出     |     | 2500        |    | LSB    |  |  |

表 15.7 温度传感器特性



- (1) 温度传感器斜率和偏移根据使用ADC内部基准的ADCLSB指定。
- (2) ADC温度系数已被纳入技术规范。
- (3) 温度传感器的输出(LSB结果)与温度呈现正向变化关系。温度上升将使得ADC值相对于初始值增加;温度下降将使得ADC的值相对于初始值下降。

为保证温度传感器的精度,温度传感器的使用需在其上电位(ADCTRL1 寄存器内的  $REG_T_PWD$  位)使能后等待 $t_{startuv}$ 时间。且 ADC 采集窗口时间需满足 $t_{acq}$ 最小要求。

每颗芯片在寄存器地址 0x752E 与 0x752F 分别存有温度传感器的 Slope 值与 Offset 值,分别代表 ADC 每变化 1 个 LSB 代表的温度变化值,及 0 °C时 ADC 采样温度传感器数值。用户可根据 Slope 值与 Offset 值通过软件计算当前温度值,此时的温度传感器结果更加准确。

#### 15.7 ADC 寄存器概述

表 15.8 ADC 相关寄存器列表

| 名称          | 地址    | 大小 (x16) | 描述            |
|-------------|-------|----------|---------------|
| ADCTRL1     | 70A0h | 1        | ADC 控制寄存器 1   |
| ADCTRL2     | 70A1h | 1        | ADC 控制寄存器 2   |
| MAXCONV     | 70A2h | 1        | 最大转换通道寄存器     |
| CHSELSEQ1   | 70A3h | 1        | 通道选择排序控制寄存器 1 |
| CHSELSEQ2   | 70A4h | 1        | 通道选择排序控制寄存器 2 |
| CHSELSEQ3   | 70A5h | 1        | 通道选择排序控制寄存器 3 |
| CHSELSEQ4   | 70A6h | 1        | 通道选择排序控制寄存器 4 |
| AUTO_SEQ_SR | 70A7h | 1        | 自动排序状态寄存器     |
| RESULT0     | 70A8h | 1        | 转换结果缓冲寄存器 0   |
| RESULT1     | 70A9h | 1        | 转换结果缓冲寄存器 1   |
| RESULT2     | 70AAh | 1        | 转换结果缓冲寄存器 2   |
| RESULT3     | 70Abh | 1        | 转换结果缓冲寄存器 3   |
| RESULT4     | 70Ach | 1        | 转换结果缓冲寄存器 4   |
| RESULT5     | 70ADh | 1        | 转换结果缓冲寄存器 5   |
| RESULT6     | 70Aeh | 1        | 转换结果缓冲寄存器 6   |
| RESULT7     | 70AFh | 1        | 转换结果缓冲寄存器 7   |
| RESULT8     | 70B0h | 1        | 转换结果缓冲寄存器 8   |
| RESULT9     | 70B1h | 1        | 转换结果缓冲寄存器 9   |
| RESULT10    | 70B2h | 1        | 转换结果缓冲寄存器 10  |
| RESULT11    | 70B3h | 1        | 转换结果缓冲寄存器 11  |
| RESULT12    | 70B4h | 1        | 转换结果缓冲寄存器 12  |
| RESULT13    | 70B5h | 1        | 转换结果缓冲寄存器 13  |



| ▲ 进芯电子<br>Advancechip ADN | 116F03A1 Digital | Signal Pr | ocessor V1.4      |
|---------------------------|------------------|-----------|-------------------|
| RESULT14                  | 70B6h            | 1         | 转换结果缓冲寄存器 14      |
| RESULT15                  | 70B7h            | 1         | 转换结果缓冲寄存器 15      |
| CALIBRATION               | 70B8h            | 1         | 校准寄存器             |
|                           | 7101h            | 1         | PWM 同步触发采样模式选择寄存器 |

## 1. ADCTRL1 寄存器—70A0h

| 15        | 14    | 13      | 12   | 11      | 10      | 9       | 8       |
|-----------|-------|---------|------|---------|---------|---------|---------|
| 保留        | RESET | SOFT    | FREE | ACQ PS3 | ACQ PS2 | ACQ PS1 | ACQ PS0 |
|           | RS-0  | RW-0    | RW-0 | RW-0    | RW-0    | RW-0    | RW-0    |
| 7         | 6     | 5       | 4    | 3       | 2       | 1       | 0       |
| REG T PWD | CONT  | INT PRI | SEQ  | ADCCLK  | ADCCLK  | ADCCLK  | ADCCLK  |
| KEG_I_PWD | RUN   | INTERI  | CASC | PS3     | PS2     | PS1     | PS0     |
| RW-0      | RW-0  | RW-0    | RW-0 | RW-0    | RW-0    | RW-0    | RW-0    |

| 位     | 名称            | 值    | 说明                                      |
|-------|---------------|------|-----------------------------------------|
| 15    | 保留            |      | 读取返回 0,写入无效。                            |
| 14    | RESET         |      | 针对 ADC 模块的总复位。所有的寄存器和排序器指针都复位到          |
|       |               | 0    | 芯片复位引脚拉低或上电复位时的初始状态。                    |
|       |               | 1    | 无影响                                     |
|       |               |      | 复位整个 ADC 模块,复位后将此位设为 0                  |
|       |               |      | 注:ADCTRL1 寄存器复位操作示范                     |
|       |               |      | 系统复位时 ADC 模块也被复位。如果希望在其它时刻对 ADC 进       |
|       |               |      | 行复位,可以向此位写 1 实现。一个 NOP 指令后,就可以向         |
|       |               |      | ADCTRL1 寄存器写入恰当的值。                      |
| 13-12 | SOFT 和 FREE 位 |      | 此两位决定仿真挂起时 ADC 模块的工作状态。在自由运行模式          |
|       |               |      | 下,ADC 模块可以继续它的工作。在停止模式下,ADC 模块可         |
|       |               | 0 0  | 立刻停止或等完成当前转换后停止。                        |
|       |               | 0 1  | 仿真挂起时立刻停止                               |
|       |               | X 1  | 停止前完成当前转换                               |
|       |               |      | 自由运行,忽略仿真挂起继续进行                         |
| 11-8  | ACQ PS [3:0]  |      | 采集窗口大小。此位字段控制 SOC 脉宽,后者确定采样开关关          |
|       |               |      | 闭的时间。SOC脉宽为ADCTRL1[11:8] + 1乘以ADCCLK周期。 |
|       |               | 0000 | 1xT <sub>ADCCLK</sub>                   |
|       |               | 0001 | 2xT <sub>ADCCLK</sub>                   |
|       |               | 0010 | 3xT <sub>ADCCLK</sub>                   |
|       |               | 0011 | 4xT <sub>ADCCLK</sub>                   |
|       |               | 0100 | 5xT <sub>ADCCLK</sub>                   |
|       |               | 0101 | 6xT <sub>ADCCLK</sub>                   |
|       |               | 0110 | 7xT <sub>ADCCLK</sub>                   |
|       |               | 0111 | 8xT <sub>ADCCLK</sub>                   |
|       |               | 1000 | 9xT <sub>adcclk</sub>                   |



| Advanced | ADM16F         |      | igital Signal Processor V1.                 |
|----------|----------------|------|---------------------------------------------|
|          |                | 1001 | 10xT <sub>ADCCLK</sub>                      |
|          |                | 1010 | 11xT <sub>ADCCLK</sub>                      |
|          |                | 1011 | 12xT <sub>ADCCLK</sub>                      |
|          |                | 1100 | 13xT <sub>ADCCLK</sub>                      |
|          |                | 1101 | 14xT <sub>ADCCLK</sub>                      |
|          |                | 1110 | 15xT <sub>ADCCLK</sub>                      |
|          |                | 1111 | 16xT <sub>ADCCLK</sub>                      |
| 7        | REG_T_PWD      |      | 控制温度传感器上电或断电,温度传感器固定连接在 ADC 的 A3            |
|          |                | 0    | 通道 (A3 未引出到芯片引脚)                            |
|          |                | 1    | 温度传感器断电                                     |
|          |                |      | 温度传感器上电                                     |
| 6        | CONT RUN       |      | 连续运行位。                                      |
|          |                |      | 此位决定排序器工作在连续转换模式还是启/停模式。可在当前转               |
|          |                |      | 换序列有效时写入此位。此位在当前转换序列结束时生效;在连                |
|          |                | 0    | 续转换模式下,不必复位排序器;但是,在启/停模式下必须复位               |
|          |                | 1    | 排序器,以使转换器进入状态 CONV00。                       |
|          |                |      | 启/停模式。到达 EOS 后排序器停止。除非复位排序器,否则排             |
|          |                |      | 序器在遇到下一个 SOC 时将从结束时的状态启动。                   |
|          |                |      | 连续转换模式。到达 EOS 后,排序器的行为取决于 SEQ_OVRD          |
|          |                |      | 位的状态。如 SEQ_OVRD 清 0,则排序器将再次从其复位状态           |
|          |                |      | 启动(CONV00 对应 SEQ1 和级联 SEQ, CONV08 对应 SEQ2)。 |
|          |                |      | 如 SEQ_OVRD 置 1,则排序器将再次从其当前位置启动,而不           |
|          |                |      | 会进行复位。                                      |
| 5        | INT PRI        |      | ADC 中断优先级位。                                 |
|          |                | 0    | 高优先级                                        |
|          |                | 1    | 低优先级                                        |
| 4        | SEQ CASC       |      | 排序器级联操作控制。此位决定 SEQ1 和 SEQ2 作为 2 个 8 态排      |
|          |                | 0    | 序器工作还是作为单个 16 态排序器工作(SEQ)。                  |
|          |                | 1    | 双排序器模式。SEQ1 和 SEQ2 作为 2 个 8 态排序器工作。         |
|          |                |      | 级联模式。SEQ1 和 SEQ2 作为单个 16 态排序器工作 (SEQ)。      |
|          |                |      | ADC 时钟预分频。除了在 ADCCLKPS[3-0]为 0000 时 HSPCLK  |
| 3-0      | ADCCLKPS [3:0] |      | 直通外,将外设时钟 HSPCLK 除以 2*ADCCLKPS[3-0],以产生     |
|          |                |      | ADCCLK.                                     |
|          |                |      | ADCCLKPS [3:0] ADC 外设时钟除法器 ADCCLK           |
|          |                | 0000 | 0 HSPCLK/1                                  |
|          |                | 0001 | 1 HSPCLK/2                                  |
|          |                | 0010 | 2 HSPCLK/4                                  |
|          |                | 0011 | 3 HSPCLK/6                                  |
|          |                | 0100 | 4 HSPCLK/8                                  |
|          |                | 0101 | 5 HSPCLK/10                                 |
|          |                | 0110 | 6 HSPCLK/12                                 |
|          |                | 0111 | 7 HSPCLK/14                                 |
|          |                | 1000 | , IIJI CLIQ IT                              |

| A | 进芯电子        |
|---|-------------|
|   | Advancechip |

| <b>ADM16F03A1</b> | <b>Digital</b> | Signal | <b>Processor</b> |
|-------------------|----------------|--------|------------------|
|                   |                |        |                  |

V1.4

| 保留                   | 9                    | 1001                                 |  |
|----------------------|----------------------|--------------------------------------|--|
| 保留                   | 10                   | 1010                                 |  |
| 保留                   | 11                   | 1011                                 |  |
| 保留                   | 12                   | 1100                                 |  |
| 保留                   | 13                   | 1101                                 |  |
| 保留                   | 14                   | 1110                                 |  |
| 保留                   | 15                   | 1111                                 |  |
| 保留<br>保留<br>保留<br>保留 | 10<br>11<br>12<br>13 | 1010<br>1011<br>1100<br>1101<br>1110 |  |

## 2. ADCTRL2 寄存器—70A1h

| 15              | 14       | 13          | 12          | 11                          | 10                          | 9                | 8                      |
|-----------------|----------|-------------|-------------|-----------------------------|-----------------------------|------------------|------------------------|
| 保留位             | RST SEQ1 | SOC<br>SEQ1 | SEQ1<br>BSY | INT ENA<br>SEQ1<br>(Mode 1) | INT ENA<br>SEQ1<br>(Mode 0) | INT FLAG<br>SEQ1 | EM1_T1A<br>SOC<br>SEQ1 |
| RW-0            | RS-0     | RW-0        | R-0         | RW-0                        | RW-0                        | RC-0             | RW-0                   |
| 7               | 6        | 5           | 4           | 3                           | 2                           | 1                | 0                      |
| EXT SOC<br>SEQ1 | RST SEQ2 | SOC<br>SEQ2 | SEQ2<br>BSY | INT ENA<br>SEQ2<br>(Mode 1) | INT ENA<br>SEQ2<br>(Mode 0) | INT FLAG<br>SEQ2 | EM1_T1B<br>SOC<br>SEQ2 |
| RW-0            | RW-0     | RW-0        | RW-0        | RW-0                        | RW-0                        | RW-0             | RW-0                   |

| 位  | 名称       | 值 | 说明                                     |
|----|----------|---|----------------------------------------|
| 15 | 保留位      |   |                                        |
| 14 | RST SEQ1 |   | 复位排序器 1,对此位写 1 将使 SEQ1 或级联排序器立即复位      |
|    |          |   | 到初始的 "触发前"状态,即在 CONV00 等待触发信号。可        |
|    |          | 0 | 中止当前活动的转换序列。                           |
|    |          | 1 | 无操作                                    |
|    |          |   | 立即将排序器复位到状态 CONV00                     |
| 13 | SOC SEQ1 |   | 排序器 1 (SEQ1) 或级联排序器 SEQ 的转换开始 (SOC) 触发 |
|    |          |   | 源。可通过以下方式设置此位:                         |
|    |          |   | •S/W——通过软件将 1 写入此位                     |
|    |          |   | •EM1_T1A——事件管理器的 T1A 比较器               |
|    |          |   | •EXT ——外部引脚 (ADCSOC 引脚)                |
|    |          |   | 情形 1: SEQ1 空闲且已清除 SOC 位,则 SEQ1 立即启动 (受 |
|    |          | 0 | 仲裁机制控制)。允许为任何"挂起"的触发请求设置和清除            |
|    |          |   | 此位。                                    |
|    |          | 1 | 情形 2: SEQ1 忙且已清除 SOC 位,则设置此位以指出触发请     |
|    |          |   | 求正挂起。当完成当前转换后最终启动 SEQ1 时,将清除此位。        |
|    |          |   | 情形 3: SEQ1 忙且设置了 SOC 位,则忽略此情况下出现的任     |
|    |          |   | 何触发信号 (丢失触发事件)。                        |
|    |          |   | 清除挂起的 SOC 触发器。                         |
|    |          |   | 注:如果排序器已启动,则自动清除此位;因此,写入0无影            |



| Advanced | hip ADM16F          | <u>03A1 D</u>        | igital Signal Processor V1.                                                                                                                                                                                                                                                                            |
|----------|---------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                     |                      | 响,即不能通过写 0 来停止已启动的排序器。<br>软件触发器 - 从当前停止的位置启动 SEQ1 (即空闲模式)<br>注:不应在同一指令中设置 RST_SEQ1 (ADCTRL2.14) 和<br>SOC_SEQ1 (ADCTRL2.13) 位。这将使排序器复位,但不会启<br>动序列。正确的操作顺序为首先设置 RST_SEQ1 位,并在随后<br>的指令对 SOC_SEQ1 写 1。这样能够确定排序器是否已复位以<br>及新序列是否已启动。此序列也适用于 RST_SEQ2<br>(ADCTRL2.6) 和 SOC_SEQ2 (ADCTRL2.5) 位。             |
| 12       | SEQ1 BSY            | 0                    | SEQ1 忙状态位。<br>当 ADC 自动转换排序正在进行 SEQ1 转换时此位被置 1。当转换完成时此位被清 0。<br>排序器处于空闲状态<br>排序器正在进行转换                                                                                                                                                                                                                  |
| 11-10    | INT ENA SEQ1        | 00<br>01<br>10<br>11 | SEQ1 的中断方式使能控制位。<br>中断禁止<br>中断模式 1。当中断标志位置 1 时,立刻申请中断<br>中断模式 2。仅当中断标志位已经置 1 时,才产生中断请求。<br>保留                                                                                                                                                                                                          |
| 9        | INT FLAG SEQ1       | 0                    | 对 SEQ1 的 ADC 中断标志位<br>这位表示中断事件是否已发生。用户通过向该位写 1 来清除此位。<br>无中断事件发生<br>中断事件发生过                                                                                                                                                                                                                            |
| 8        | EM1_T1A SOC<br>SEQ1 | 0 1                  | EM1_T1A 对 SEQ1 产生 SOC 信号的屏蔽位。<br>禁用 EM1_T1A 的触发源启动 SEQ1<br>启用 EM1_T1A 的触发源启动 SEQ1                                                                                                                                                                                                                      |
| 7        | EXT SOC SEQ1        | 0                    | 外部信号对 SEQ1 的转换启动位。<br>无操作<br>允许 ADCSOC 引脚上的信号触发 ADC 自动转换序列                                                                                                                                                                                                                                             |
| 6        | RST SEQ2            | 0                    | 排序器 2 复位<br>无操作<br>立刻复位 SEQ2,指针指向 CONV08,复位排序器时当前正在<br>转换序列将被打断。                                                                                                                                                                                                                                       |
| 5        | SOC SEQ2            | 0                    | 排序器 2 (SEQ2) 的转换开始触发源。(仅适用于双排序器模式;级联模式时忽略。)可通过以下触发器设置此位: • S/W——通过软件将 1 写入此位 • EM1_T1B——事件管理器的 T1B 比较器当触发源到来时,有三种工作状态可能性:情形 1: SEQ2 空闲且已清除 SOC 位,则 SEQ2 立即启动(受仲裁机制控制),且允许为任何挂起的触发请求清除该位。情形 2: SEQ2 正处于转换状态且已清除 SOC 位,则此位写入1 代表存在触发请求处于挂起状态。完成当前转换后启动挂起的SEQ2 时将此位清 0。情形 3: SEQ2 正处于转换状态且 SOC 同时置位,此情形将忽 |



|     | ADMITUT       | JUALD | igital Signal I luccssul vi.      |
|-----|---------------|-------|-----------------------------------|
|     |               |       | 略此后续触发事件。                         |
|     |               |       | 清除挂起的 SOC 触发源                     |
|     |               |       | 注:如排序器已启动,则自动清除此位;写入0无效,即不能       |
|     |               |       | 通过对此位写 0 停止已启动的排序器。               |
|     |               |       | 软件触发,从当前停止的位置启动 SEQ2 (即空闲模式)      |
| 4   | SEQ2 BSY      |       | SEQ2 忙状态位。                        |
|     |               | 0     | 当 ADC 自动排序转换时此位置 1。转换完成后此位被清 0。   |
|     |               | 1     | 排序器处于空闲状态                         |
|     |               |       | 排序器正在进行转换                         |
| 3-2 | INT ENA SEQ2  |       | SEQ2 的中断方式使能控制位。                  |
|     |               | 00    | 中断禁止                              |
|     |               | 01    | 中断模式 1。当中断标志位置 1 时,立刻申请中断         |
|     |               | 10    | 中断模式 2。仅当中断标志位已置 1 时, 才产生中断请求, 此模 |
|     |               | 11    | 式支持每间隔一个转换完成产生中断请求。               |
|     |               |       | 保留                                |
| 1   | INT FLAG SEQ2 |       | 对 SEQ2 的 ADC 中断标志位                |
|     |               | 0     | 此位表示中断事件是否产生。用户通过向该位写 1 清除此位。     |
|     |               | 1     | 无中断事件发生                           |
|     |               |       | 中断事件发生过                           |
| 0   | EM1_T1B SOC   |       | EM1_T1B 对 SEQ2 产生 SOC 信号的屏蔽位。     |
|     | SEQ2          | 0     | 禁用 EM1_T1B 的触发源启动 SEQ2            |
|     |               | 1     | 启用 EM1_T1B 的触发源启动 SEQ2            |
|     |               |       |                                   |

#### 3. 最大转换通道寄存器 MAXCONV—70A2h

| 15  | 14      | 13      | 12      | 11      | 10      | 9       | 8       |  |  |  |
|-----|---------|---------|---------|---------|---------|---------|---------|--|--|--|
| 保留  |         |         |         |         |         |         |         |  |  |  |
|     | R-x     |         |         |         |         |         |         |  |  |  |
| 7   | 6       | 5       | 4       | 3       | 2       | 1       | 0       |  |  |  |
| 保留  | MAX     |  |  |  |
|     | CONV2_2 | CONV2_1 | CONV2_0 | CONV1_3 | CONV1_2 | CONV1_1 | CONV1_0 |  |  |  |
| R-x | RW-0    |  |  |  |

| 位    | 名称 | 值    | 说明                                |
|------|----|------|-----------------------------------|
| 15-7 |    |      | 保留位                               |
| 6-0  |    |      | MAXCONVn 位域                       |
|      |    |      | MAXCONVn 位域定义在自动转换中最多转换的通道个数。该位域的 |
|      |    |      | 值随着排序器工作模式的变化而变化。                 |
|      |    |      | 对于 SEQ1,使用 MAXCONV1_2~0 位。        |
|      |    | 0000 | 对于 SEQ2,使用 MAXCONV2_2~0 位。        |
|      |    | 0001 | 对于级联 SEQ,使用 MAXCONV1_3~0 位。       |
|      |    |      | 最大通道转化数对应关系如下:                    |



| 1110 | 1  |  |  |  |  |
|------|----|--|--|--|--|
| 1111 | 2  |  |  |  |  |
|      |    |  |  |  |  |
|      | 15 |  |  |  |  |
|      | 16 |  |  |  |  |

#### ADCMAXCONV 寄存器位编程示例:

如仅需要配置 5 次转换,则将 MAX\_CONVn 设置为 4。

情形 1: 双排序器模式 SEQ1 和级联模式

排序器从 CONV00 变化到 CONV04, 并将 5 个转换结果存储在结果寄存器 RESULT 00 至 RESLUT 04 中。

情形 2: 双排序器模式 SEQ2

排序器从 CONV08 变化到 CONV12,并将 5 个转换结果存储在结果寄存器 RESULT 08 至 RESULT 12 中。

情形 3: MAX CONV1 值大于 7 时双排序器模式

如双排序器模式 (即 2 个独立的 8 态排序器) 选择了大于 7 的 MAX CONV1 值,则 SEQ CNTR 将继续计数

到超过7,这将导致排序器回绕到CONV00,并继续计数。

#### 4. 自动排序状态寄存器 AUTO\_SEQ\_SR—70A7h

| 15  | 14        | 13     | 12     | 11     | 10     | 9                 | 8      |
|-----|-----------|--------|--------|--------|--------|-------------------|--------|
|     | ————<br>保 | សា     |        | SEQ    | SEQ    | SEQ               | SEQ    |
|     | 1木        | 由      |        | CNTR3  | CNTR2  | CNTR1             | CNTR0  |
|     | R         | -x     |        | R-0    | R-0    | R-0               | R-0    |
| 7   | 6         | 5      | 4      | 3      | 2      | 1                 | 0      |
| 保留  | SEQ2-     | SEQ2-  | SEQ2-  | SEQ1-  | SEQ1-  | SEQ1-             | SEQ1-  |
|     | State2    | State1 | State0 | State3 | State2 | CNTR1<br>R-0<br>1 | State0 |
| R-x | R-0       | R-0    | R-0    | R-0    | R-0    | R-0               | R-0    |

| 位     | 名称          | 值    | 说明                                 |
|-------|-------------|------|------------------------------------|
| 15-12 |             |      | 保留位                                |
| 11-8  | SEQ CNTR3   |      | 排序器计数状态位。自动排序转换任务开始前,SEQ CNTR n    |
|       | ~ SEQ CNTR0 |      | 的值被加载到 MAX CONVn 寄存器中,可通过读取 SEQ    |
|       |             | 0000 | CNTRn 减计数的值判断排序器状态,此值与 SEQ1 和 SEQ2 |
|       |             | 0001 | Busy 状态位,共同决定排序器工作进程。              |
|       |             | 0010 | 1                                  |
|       |             | 0011 | 2                                  |
|       |             | 0100 | 3                                  |
|       |             | 0101 | 4                                  |
|       |             | 0110 | 5                                  |
|       |             | 0111 | 6                                  |
|       |             | 1000 | 7                                  |
|       |             | 1001 | 8                                  |
|       |             | 1010 | 9                                  |
|       |             | 1011 | 10                                 |

|     | 11211111     |      | 51641 8151141 1 1 0 0 0 8 8 0 1         |
|-----|--------------|------|-----------------------------------------|
|     |              | 1100 | 11                                      |
|     |              | 1101 | 12                                      |
|     |              | 1110 | 13                                      |
|     |              | 1111 | 14                                      |
|     |              |      | 15                                      |
|     |              |      | 16                                      |
| 7   |              |      | 保留位                                     |
| 6-4 | SEQ2-State2  |      | SEQ2_STATE 位字段为 SEQ2 的指针。反映 SEQ2 指针的状态。 |
|     | ~SEQ2-State0 |      |                                         |
| 3-0 | SEQ1-State3  |      | SEQ1_STATE 位字段为 SEQ1 或级联模式的指针。反映 SEQ1   |
|     | ~SEQ1-State0 |      | 或级联模式指针状态。                              |

## 5. ADC 输入通道选择排序控制寄存器 (CHSELSEQn)

ADC 输入通道选择排序控制寄存器控制位介绍,如下表所示:

## 通道选择寄存器 CHSELSEQ1—70A3h

| 15                      | 14    | 13          | 12     | 11     | 10     | 9                                                                                                  | 8 |  |
|-------------------------|-------|-------------|--------|--------|--------|----------------------------------------------------------------------------------------------------|---|--|
|                         | CON   | IV03        |        |        | CONV02 |                                                                                                    |   |  |
|                         | RW    |             |        |        | RW     | <b>'-0</b>                                                                                         |   |  |
| 7                       | 6     | 5           | 4      | 3      | 2      | 1                                                                                                  | 0 |  |
|                         | CON   | IV01        |        |        | CON    | V00                                                                                                |   |  |
|                         | RW    | <i>I</i> -0 |        | RW-0   |        |                                                                                                    |   |  |
| 通道选择寄存器 CHSELSEQ2—70A4h |       |             |        |        |        |                                                                                                    |   |  |
| 15                      | 14    | 13          | 12     | 11     | 10     | 9                                                                                                  | 8 |  |
|                         | CON   | IV07        |        |        | CON    | V06                                                                                                |   |  |
| •                       | RW    | <b>/</b> -0 |        |        | RW     | <b>'-0</b>                                                                                         |   |  |
| 7                       | 6     | 5           | 4      | 3      | 2      | 1                                                                                                  | 0 |  |
|                         | CON   | IV05        |        | CONV04 |        |                                                                                                    |   |  |
|                         | RW    | <i>I</i> -0 |        | RW-0   |        |                                                                                                    |   |  |
| 通道选择書                   | 存器 CH | SELSEQ3-    | —70A5h |        |        |                                                                                                    |   |  |
| 15                      | 14    | 13          | 12     | 11     | 10     | 9                                                                                                  | 8 |  |
|                         | CON   | IV11        |        | CONV10 |        |                                                                                                    |   |  |
|                         | RW    | <i>I</i> -0 |        | RW-0   |        |                                                                                                    |   |  |
| 7                       | 6     | 5           | 4      | 3      | 2      | 1                                                                                                  | 0 |  |
|                         | CON   | IV09        |        |        | CONV08 |                                                                                                    |   |  |
| •                       | RW-0  |             |        |        | RW     | <b>'-0</b>                                                                                         |   |  |
| 通道选择署                   | 存器 CH | SELSEQ4-    | —70A6h |        |        |                                                                                                    |   |  |
| 15                      | 14    | 13          | 12     | 11     | 10     | 9                                                                                                  | 8 |  |
|                         | CON'  | V15         |        |        | CON    | IV14                                                                                               |   |  |
|                         | RW    | -0          |        |        | RW     | V-0                                                                                                |   |  |
| 7                       | 6     | 5           | 4      | 3      | 2      | 1                                                                                                  | 0 |  |
|                         | CON   | V13         |        |        | CON    | CONV06  RW-0  2 1 0  CONV04  RW-0  10 9 8  CONV10  RW-0  2 1 0  CONV08  RW-0  10 9 8  CONV14  RW-0 |   |  |

V1.4

RW-0

RW-0

注: R=可读, W=可写, S=仅设置, C=清除, -0=复位后的值;

#### 每一个 4 位域 CONVXX 可选择 16 个模拟输入通道中的任何一个。

| CONV <sub>XX</sub> 中 xx 的四位二进制码 | ADC 模拟输入通道选择 |
|---------------------------------|--------------|
| 0000                            | 通道 A0        |
| 0001                            | 通道 A1        |
| 0010                            | 通道 A2        |
| 0011                            | 通道 A3        |
| 0100                            | 通道 A4        |
| 0101                            | 通道 A5        |
| 0110                            | 通道 A6        |
| 0111                            | 通道 A7        |
| 1000                            | 通道 BO        |
| 1001                            | 通道 B1        |
| 1010                            | 通道 B2        |
| 1011                            | 通道 B3        |
| 1100                            | 通道 B4        |
| 1101                            | 通道 B5        |
| 1110                            | 通道 B6        |
| 1111                            | 通道 B7        |

#### 6. ADC 转换结果缓冲寄存器 RESULTn—70A8h~70B7h

| 15  | 14      | 13      | 12  | 11  | 10  | 9   | 8   |
|-----|---------|---------|-----|-----|-----|-----|-----|
| D11 | D10     | D9      | D8  | D7  | D6  | D5  | D4  |
| R-0 | R-0     | R-0     | R-0 | R-0 | R-0 | R-0 | R-0 |
| 7   | _       | _       |     | •   | 2   | 4   | •   |
| /   | 6       | 5       | 4   | 3   | 2   | I   | 0   |
| D3  | 6<br>D2 | 5<br>D1 | D0  | 0   | 0   | 0   | 0   |

注: R=可读, W=可写, S=仅设置, C=清除, -0=复位后的值;

| 位    | 名称 | 值 | 说明                   |
|------|----|---|----------------------|
| 15-4 |    |   | 存放 ADC 的 12 转换结果     |
|      |    |   | D11 对应最高位            |
|      |    |   |                      |
|      |    |   | DO 对应最低位             |
| 3-0  |    |   | 结果寄存器的低 4 位,读取时返回 0。 |

#### 7. PWM 同步触发采样模式选择寄存器—7101h

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
|----|----|----|----|----|----|---|---|
|----|----|----|----|----|----|---|---|

进芯电子 Advancechip

CAP1\_ST

 $R_0$ 

CAP2\_ST

 $R_0$ 

**ADM16F03A1 Digital Signal Processor** 

保留

WR\_0

CAP2\_ST

 $R_0$ 

| 2201 | V 1.4    | ŀ      |  |
|------|----------|--------|--|
| 保留   | ADCT1AH_ | ADCT1A |  |
| 沐笛   | CTL      | L_CTL  |  |
| WR_0 | WR_0     | WR_0   |  |
| 2    | 1        | 0      |  |

| 7        | 6        | 5  | 4  | 3  | 2      | 1        | 0      |
|----------|----------|----|----|----|--------|----------|--------|
| ADCT1BH_ | ADCT1BL_ | 保留 | 保留 | 保留 | COMP1_ | COMP2 CT | COMP3_ |
| CTL      | CTL      | 八田 | 休田 | 本田 | СТ     | COMPZ_C1 | СТ     |

保留

 $WR_0$ 

WR 0 WR 0

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

| 位 9 | ADCT1CompareAH_CTL: T1CompareA 信号上升沿触发; |
|-----|-----------------------------------------|
| 位 8 | ADCT1CompareAL_CTL: T1CompareA 信号下降沿触发; |
| 位 7 | ADCT1CompareBH_CTL: T1CompareB 信号上升沿触发; |
| 位 6 | ADCT1CompareBL_CTL: T1CompareB 信号下降沿触发; |

#### 8. 温度传感器 TSLOPE—752Eh

| 15        | 14        | 13        | 12        | 11        | 10        | 9        | 8        |
|-----------|-----------|-----------|-----------|-----------|-----------|----------|----------|
| T_SLOPE15 | T_SLOPE14 | T_SLOPE13 | T_SLOPE12 | T_SLOPE11 | T_SLOPE10 | T_SLOPE9 | T_SLOPE8 |
| WR_0      | WR_0      | WR_0      | WR_0      | WR_0      | WR_0      | WR_0     | WR_0     |
| 7         | 6         | 5         | 4         | 3         | 2         | 1        | 0        |
| T_SLOPE7  | T_SLOPE6  | T_SLOPE5  | T_SLOPE4  | T_SLOPE3  | T_SLOPE2  | T_SLOPE1 | T_SLOPE0 |
| WR 0      | WR 0     | WR 0     |

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

| 位    | 名称       | 值 | 说明                            |
|------|----------|---|-------------------------------|
| 15-0 | T_SLOPEx |   | 存放温度传感器的斜率 T <sub>SLOPE</sub> |

#### 9. 温度传感器 TOFFSET—752Fh

| 15         | 14      | 13      | 12      | 11       | 10       | 9       | 8        |
|------------|---------|---------|---------|----------|----------|---------|----------|
| T_OFFSET15 | T_OFFSE | T_OFFSE | T_OFFSE | T_OFFSET | T_OFFSET | T_OFFSE | T_OFFSET |
|            | T14     | T13     | T12     | 11       | 10       | Т9      | 8        |
| WR_0       | WR_0    | WR_0    | WR_0    | WR_0     | WR_0     | WR_0    | WR_0     |
| 7          | 6       | 5       | 4       | 3        | 2        | 1       | 0        |
| T_OFFSET7  | T_OFFSE | T_OFFSE | T_OFFSE | T_OFFSET | T_OFFSET | T_OFFSE | T_OFFSET |
|            | T6      | T5      | T4      | 3        | 2        | T1      | 0        |
| WR_0       | WR_0    | WR_0    | WR_0    | WR_0     | WR_0     | WR_0    | WR_0     |

| 位    | 名称        | 值 | 说明                 |
|------|-----------|---|--------------------|
| 15-0 | T_OFFSETx |   | 存放温度传感器的偏移 Toffset |



## 16 运放与复用数字 IO 输入

## 16.1 运放与复用数字 IO 输入说明

该系列器件包括 3 个可编程放大器 (PGA) 电路与 1 个可独立使用的运算放大器 (OPA) 电路。放大器输入端口连接到施密特触发电路,可作为数字逻辑输入端口使用。运放与复用数字 IO 的连接关系如图 16.1 所示。

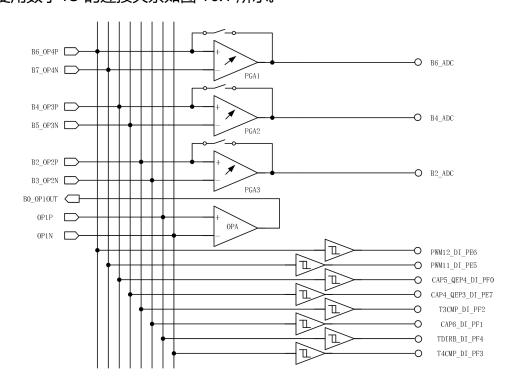



图 16.1 运放与数字 I/O 复用连接

PGA 可用作 ADC 输入的前置放大器,通过寄存器 0x7106 配置,3 路 PGA 输出分别连接到通道 ADCINB6、ADCINB4、ADCINB2。

默认情况下,寄存器 0x7106 为全 0 配置,PGA1、PGA2、PGA3 三个对应使能控制位 bit14、bit13、bit12 为全 0,PGA 功能被禁止,旁路开关使引脚 B6\_OP4P 与ADCINB6 直通,引脚 B4\_OP3P 与内部 ADCINB4 直通,引脚 B2\_OP2P 与 ADCINB2直通,信号可直接流入引脚 B6\_OP4P、B4\_OP3P、B2\_OP2P 后被 ADC 直接采样。

当配置寄存器 0x7106 的 bit14、bit13、bit12 分别为 1 时,分别对应开启 PGA1、



PGA2、PGA3 的放大器功能。引脚 B6\_OP4P、B4\_OP3P、B2\_OP2P 与内部 ADC 通道之间开关断开,信号经过 PGA 放大后再被 ADC 采样。

PGA 等效电路如图 16.2 所示。该 PGA 可实现同相放大与反相放大。同相放大模式需在 PGA 的 P 端接入待放大信号,N 端接固定偏置。反相放大模式需在 PGA 的 N 端接入待放大信号,P 端接固定偏置。同相放大模式输入为高阻,信号源内阻不影响 PGA 放大倍数;反相输入模式输入内阻为 R1,信号源内阻将影响 PGA 放大倍数,为维持 PGA 增益不发生改变,信号源需要具备一定驱动能力。

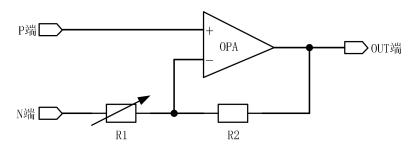



图 16.2 PGA 等效电路

使用 PGA 放大信号前需设置好 PGA 输出共模 VCMO, VCMO 计算公式为, 假定 VP 与 VN 分别为 P 端与 N 端输入共模:

$$V_{CMO} = \left[ \frac{(V_P - V_N)}{R_1} \right] \times R_2 + V_P$$

PGA 同相放大倍数 $A_{VP}$ 计算公式为:

$$A_{VP} = \frac{(R_1 + R_2)}{R_1}$$

PGA 反相放大倍数 $A_{VN}$ 计算公式为:

$$A_{VN} = -\frac{R_2}{R_1}$$

PGA 的放大倍数的调整,可通过修改寄存器 0x7106 配置调整 $R_1$ 的阻值实现。在 PGA 不同放大倍数下,  $R_1$ 与 $R_2$ 的近似阻值如表 16.1 所示。



表 16. 1 PGA 内阻 R1 与 R2 数值

| PGA 同相放大倍数 | PGA 反相放大倍数 | R1 电阻值 (kΩ) | R2 电阻值 (kΩ) |
|------------|------------|-------------|-------------|
| 2          | -1         | 22          | 22          |
| 4          | -3         | 22/3        | 22          |
| 8          | -7         | 22/7        | 22          |
| 10         | -9         | 22/9        | 22          |
| 16         | -15        | 22/15       | 22          |

除了 3 个带反馈回路的可编程放大器外,该系列器件还集成了一个 3 端口均引出的独立运算放大器 OPA, 如图 16.1 所示。此 OPA 通过 B0\_OP1OUT 输出,输出端口同时连接到 ADCINB0 通道。默认情况下,寄存器 0x7106 为全 0 配置,OPA 功能处于关闭状态。

如图 16.1 所示 3 个 PGA 与 1 个 OPA 的输入端口可同时被复用为数字信号输入端口, 默认情况下该复用端口为模拟信号输入端口, 当控制寄存器 0x7103 的低 8 位为 1时可打开对应数字信号输入功能。

## 16.2 运放与复用数字 IO 输入寄存器

#### 16.2.1 通道对应的配置寄存器

#### 1. 通道对应的配置寄存器—7103h

|   | 15    | 14    | 13   | 12   | 11   | 10   | 9    | 8    |  |
|---|-------|-------|------|------|------|------|------|------|--|
|   | СОМРН | COMPL | PDPA | 保留   | 保留   | 保留   | 保留   | 保留   |  |
| , | RX    | RX    | RW 0 |  |

| 7         | 6         | 5         | 4         | 3         | 2         | 1         | 0         |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| REG_INPUT |
| _CT7      | _СТ6      | _CT5      | _CT4      | _СТ3      | _CT2      | _CT1      | _СТ0      |
| RW_0      |

| <i>1</i> ÷ 1 ⊑        | COMPH: 比较器 COMPH 状态位;    |
|-----------------------|--------------------------|
| <u>位</u> 15           | 1: A0_COMPO 输入电压超过上限电压;  |
|                       | 0: A0_COMP0 输入电压未超过上限电压。 |
| <i>l</i> → 1 <i>A</i> | COMPL: 比较器 COMPL 状态位;    |
| <u>位</u> 14           | 1: A0_COMP0 输入电压低于下限电压;  |
|                       | 0: A0_COMP0 输入电压未低于下限电压。 |

| Advancechip            | ADMI16F03AI Digital Signal Processor | V1.4 |
|------------------------|--------------------------------------|------|
| 位 13                   | PDPA: 为 PDPINTA 输入源控制切换位;            |      |
| <u>  1</u> <u>V</u> 15 | 1: 配置 PDPINTA 输入源使用 COMPH/COMPL;     |      |
|                        | 0: 配置 PDPINTA 输入源使用 B7_OP4N          |      |
| 位 12~位 8               | 保留                                   |      |
| <i>l</i> ÷. ¬          | REG_INPUT_CT7: 复用 IOPE5 输入使能位;       |      |
| 位 7                    | 0:配置端口为 ADCINB7                      |      |
|                        | 1:配置端口为数字 IO 输入端口 IOPE5              |      |
| 1÷. C                  | REG_INPUT_CT6: 复用 IOPE6 输入使能位;       |      |
| 位 6                    | 0:配置端口为 ADCINB6                      |      |
|                        | 1:配置端口为数字 IO 输入端口 IOPE6              |      |
| / <del>-&gt;.</del> F  | REG_INPUT_CT5: 复用 IOPE7 输入使能位;       |      |
| 位 5                    | 0:配置端口为 ADCINB5                      |      |
|                        | 1: 配置端口为数字 IO 输入端口 IOPE7             |      |
| /÷: A                  | REG_INPUT_CT4: 复用 IOPF0 输入使能位;       |      |
| 位 4                    | 0:配置端口为 ADCINB4                      |      |
|                        | 1: 配置端口为数字 IO 输入端口 IOPF0             |      |
| <i>l</i> ÷: 2          | REG_INPUT_CT3: 复用 IOPF1 输入使能位;       |      |
| 位 3                    | 0:配置端口为 ADCINB3                      |      |
|                        | 1: 配置端口为数字 IO 输入端口 IOPF1             |      |
| <i>l</i> ÷: 2          | REG_INPUT_CT2: 复用 IOPF2 输入使能位;       |      |
| 位 2                    | 0:配置端口为 ADCINB2                      |      |
|                        | 1: 配置端口为数字 IO 输入端口 IOPF2             |      |
| <i>l</i> ÷. 1          | REG_INPUT_CT1: 复用 IOPF3 输入使能位;       |      |
| <u>位</u> 1             | 0:配置端口为 ADCINB1                      |      |
|                        | 1: 配置端口为数字 IO 输入端口 IOPF3             |      |
| 位 0                    | REG_INPUT_CT0: 复用 IOPF4 输入使能位;       |      |
| 1 <u>V</u> U           | 0:配置端口为 ADCINB0                      |      |
|                        | 1: 配置端口为数字 IO 输入端口 IOPF4             |      |
|                        |                                      |      |

## 16.2.2 OPA 与 PGA 配置寄存器

#### 1. OPA 与 PGA 配置寄存器—地址 7106h

| 1     | 15 14  REG_OPACT REG_PGA1CT |      | 13            | 12            | 11   | 10       | 9       | 8         |
|-------|-----------------------------|------|---------------|---------------|------|----------|---------|-----------|
| REG_C |                             |      | CT REG_PGA2CT | REG_PGA3CT    | 保留   | SETAG_P  | SETAG_P | SETAG_PGA |
|       |                             |      |               |               |      | GA1_B2   | GA2_B1  | 3_B0      |
| WR_0  |                             | WR_0 | WR_0          | WR_0          | WR_0 | WR_0     | WR_0    | WR_0      |
|       |                             |      |               |               |      |          |         |           |
| 7     | 7 6                         |      | 5             | 4             | 3    | 2        | 1       | 0         |
| 保留    | SETAG_PGA2_B2 SE            |      | SETAG_PGA2_B1 | SETAG_PGA2_B0 | 保留   | SETAG_PG | SETAG_P | SETAG_PGA |
|       |                             |      |               |               |      | A1_B2    | GA1_B1  | 1_B0      |



WR\_0 WR\_0

WR\_0

WR\_0

WR\_0 WR\_0

WR\_0

WR\_0

注: R=可读, W=可写, C=清除, \_0=复位值, \_X=复位值不确定, S=只可被置位;

| REG_OPACT: OPA 使能控制位;                    |
|------------------------------------------|
| 0: 关闭运放,释放 ADC 通道                        |
| 1: 打开运放                                  |
| REG_PGA1CT: PGA1 使能控制位;                  |
| 0: 关闭运放,释放 ADC 通道                        |
| 1: 打开增益可编程运放 PGA1                        |
| REG_PGA2CT: PGA2 使能控制位;                  |
| 0: 关闭运放,释放 ADC 通道                        |
| 1: 打开增益可编程运放 PGA2                        |
| REG_PGA3CT: PGA3 使能控制位;                  |
| 0: 关闭运放,释放 ADC 通道                        |
| 1: 打开增益可编程运放 PGA3                        |
| 保留                                       |
| SETAG_PGA1_B2~ SETAG_PGA1_B0: PGA1 增益控制位 |
| 保留                                       |
| SETAG_PGA2_B2~ SETAG_PGA2_B0: PGA2 增益控制位 |
| 保留                                       |
| SETAG_PGA3_B2~ SETAG_PGA3_B0: PGA3 增益控制位 |
|                                          |

### 表 16.2 PGA 放大倍数配置关系

| SETAG_PGAx_B2 | SETAG_PGAx_B1 | SETAG_PGAx_B0 | PGA 放大倍数 |
|---------------|---------------|---------------|----------|
| 0             | 0             | 0             | 2/-1     |
| 0             | 0             | 1             | 4/-3     |
| 0             | 1             | 0             | 8/-7     |
| 0             | 1             | 1             | 10/-9    |
| 1             | 0             | 0             | 16/-15   |

注: SETAG\_PGAx\_B2、SETAG\_PGAx\_B1、SETAG\_PGAx\_B0 中 PGAx 代表 PGA3, PGA2, PGA1。

#### 2 失调校准寄存器地址—0x753Bh

| 15     | 14       | 13       | 12       | 11      | 10       | 9        | 8        |
|--------|----------|----------|----------|---------|----------|----------|----------|
| /口 677 |          | REG_OP1T | REG_OP1T | / 🗆 671 | REG_PGA1 | REG_PGA1 | REG_PGA1 |
| 保留     | 保留       | U1       | U0       | 保留      |          | _VOFTU1  | _VOFTU0  |
| WR_0   | WR_0     | WR_0     | WR_0     | WR_0    | WR_0     | WR_0     | WR_0     |
|        |          |          |          |         |          |          |          |
| 7      | 6        | 5        | 4        | 3       | 2        | 1        | 0        |
| 保留     | REG_PGA2 | REG_PGA2 | REG_PGA2 | /D 67   | REG_PGA3 | REG_PGA3 | REG_PGA3 |
|        | _VOFTU2  | _VOFTU1  | _VOFTU0  | 保留      | _VOFTU2  | _VOFTU1  | _VOFTU0  |



V1.4

△ 进芯电子 Advancechip

WR\_0

WR\_0

WR\_0

WR\_0

WR\_0 \

WR\_0

WR\_0

| 位 15~位 14  | 保留                |
|------------|-------------------|
| 位 13~位 12  | OPA 失调校准控制位;      |
|            | 00: 默认值,不修调失调值    |
|            | 01:增加 3.5mV 输入失调  |
|            | 10: 增加-3.5mV 输入失调 |
| 位 11       | 保留                |
| 位 10~位 8   | PGA1 失调校准控制位;     |
| 12.00 12.0 | 000: 默认值,不修调失调    |
|            | 001:增加+2.5mV 失调   |
|            | 011:增加+5mV 失调     |
|            | 101:增加-2.5mV 失调   |
|            | 111:增加-5mV 失调     |
| 位 7        | 保留                |
| 位 6~位 4    | PGA2 失调校准控制位:     |
| , <u> </u> | 000: 默认值,不修调失调    |
|            | 001:增加+2.5mV 失调   |
|            | 011:增加+5mV 失调     |
|            | 101:增加-2.5mV 失调   |
|            | 111:增加-5mV 失调     |
| 位 3        | 保留                |
| 位2~位0      | PGA3 失调校准控制位:     |
| <u> </u>   | 000: 默认值,不修调失调    |
|            | 001:增加+2.5mV 失调   |
|            | 011:增加+5mV 失调     |
|            | 101:增加-2.5mV 失调   |
|            | 111:增加-5mV 失调     |



## 17 电压比较器

## 17.1 电压比较器说明

该系列器件包含 5 个迟滞比较器模块,如图 17.1 所示为比较器模块内部框架图。

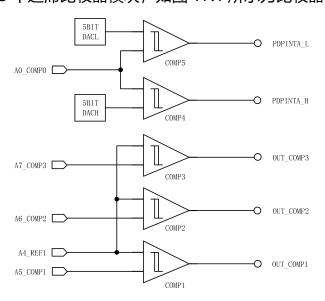



图 17.1 比较器模块内部框架图

其中 A0\_COMP0、A7\_COMP3、A6\_COMP2、A4\_REF1、A5\_COMP1 为芯片外部输入引脚,PDPINTA\_L、PDPINTA\_H、OUT\_COMP3、OUT\_COM2、OUT\_COMP1 为芯片内部信号线。

5 个比较器可大致分为 2 组, 其中 COMP1、COMP2、COMP3 为外阈值组, COMPH 与 COMPL 为内阈值组; 5 个比较器均为迟滞比较器,高阻抗输入,迟滞电压可通过寄存器 753Ch 进行配置。

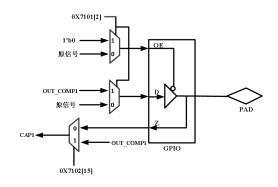
#### 17.1.1 内阈值电压比较器

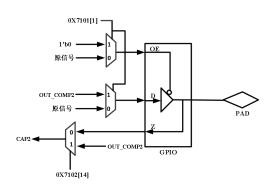
COMPH、COMPL 为内阈值组电压比较器,参考基准连接到内部 5bit DAC 输出,5bit DAC 分别输出高、低阈值,A0\_COMPO 信号与高、低阈值进行比较,产生两组数字触发信号,用于监测 A0\_COMPO 端口的输入电压大小,比较器两个输出端通过与门连接至 PDPINTA 中断触发信号 (还有一路 PDPINTA 中断源信号来自复用 B7 OP4N 引

脚),当发生 A0\_COMP0 电压高于 REFH 或低于 REFL,且持续时间超过延时滤波所设置时长,将触发 PAPINTA 中断。如下图 17.2 所示;内部 5bit DAC 的输出电压与 5bit 码值 CODE5 的关系为:

$$V_{out} = \frac{V_{CCA}}{32} \times CODE5$$

2 个 5bit DAC 共用一个使能信号,配置为 1 时使能,默认情况下为禁用状态,禁用时输出高阻为 0。其中, $V_{CCA}$ 为参考电源电压,CODE5 为二进制配置位输入。如 CODE5 为 10000B 时, $V_{out}$ 为 $\frac{V_{CCA}}{2}$ ; $V_{CCA}$ 为模拟电源电压,通过内部 LDO 产生,典型值为 3.0V。





图 17.2 内阈值组电压比较器框图

#### 17.1.2 外阈值组电压比较器

COMP1~COMP3 为三个外阀值组电压比较器,A4\_REF1 作为三个比较器的外部公共参考电压输入端,比较器输出信号可用于监测 A5\_COMP1、A6\_COMP2、A7\_COMP3 三个端口输入信号的相位,OUT\_COMP1,OUT\_COMP2,OUT\_COMP3,可通过端口复用分别从 CAP1/IOA3,CAP2/IOA4,CAP3/IOA5 引脚输出,同时可以通过CAP1/IOA3,CAP2/IOA4,CAP3/IOA5 的数据通路引入至芯片内部。也可以不通过CAP1/IOA3,CAP2/IOA4,CAP3/IOA5 引脚,直接引入芯片内部,如图 17.3 所示;







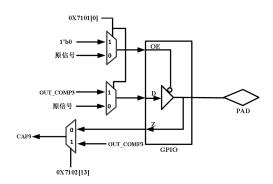



图 17.3 外阈值组电压比较器组框图

## 17.1.3 电压比较器控制寄存器

## 1. 电压比较器控制寄存器 1—7101h

| 15      | 14      | 13      | 12   | 11   | 10       | 9        | 8         |
|---------|---------|---------|------|------|----------|----------|-----------|
| CAP1 ST | CAP2 ST | CAP2 ST | 保留   | 保留   | 保留       | ADCT1AH_ | ADCT1AL_C |
| CAF1_31 | CAF2_31 | CAPZ_31 | 休田   |      | 本田       | CTL      | TL        |
| R_0     | R_0     | R_0     | WR_0 | WR_0 | WR_0     | WR_0     | WR_0      |
|         |         |         |      |      |          |          |           |
| 7       | 6       | 5       | 4    | 3    | 2        | 1        | 0         |
| ADCT1B  | ADCT1B  | 保留      | 保留   | 保留   | COMP1_CT | COMP2_CT | COMP3_CT  |
| H_CTL   | L_CTL   |         |      |      |          |          |           |
| WR_0    | WR_0    | WR_0    | WR_0 | WR_0 | WR_0     | WR_0     | WR_0      |



|           | 1                                         |
|-----------|-------------------------------------------|
| 位 15      | CAP1_ST: CAP1 状态位                         |
| 位 14      | CAP2_ST: CAP2 状态位                         |
| 位 13      | CAP3_ST: CAP3 状态位                         |
| 位 12~位 10 | 保留                                        |
| 位 9       | ADCT1CompareAH_CTL: T1CompareA 信号上升沿触发    |
| 位 8       | ADCT1CompareAL_CTL: T1CompareA 信号下降沿触发    |
| 位 7       | ADCT1CompareBH_CTL: T1CompareB 信号上升沿触发    |
| 位 6       | ADCT1CompareBL_CTL: T1CompareB 信号下降沿触发    |
| 位 5~位3    | 保留                                        |
| 位 2       | COMP1_CT: 使能比较器 COMP1 输出到 CAP1_QEP1_IOPA3 |
| 位 1       | COMP2_CT: 使能比较器 COMP2 输出到 CAP2_QEP2_IOPA4 |
| 位 0       | COMP3_CT: 使能比较器 COMP3 输出到 CAP3_IOPA5      |

## 2. 电压比较器控制寄存器 2—7102h

| 15       | 14       | 13      | 12       | 11       | 10       | 9         | 8         |
|----------|----------|---------|----------|----------|----------|-----------|-----------|
| REG_COM  | REG_COM  | REG_CO  | REG_CO   | REG_CO   | REG_DAC  | REG_REFH  | REG_REFH  |
| P1CT     | P2CT     | МР3СТ   | МРНСТ    | MPLCT    | СТ       | _CODE4    | _CODE3    |
| RW_0     | RW_0     | RW_0    | RW_0     | RW_0     | RW_0     | RW_0      | RW_0      |
|          |          |         |          |          |          |           |           |
| 7        | 6        | 5       | 4        | 3        | 2        | 1         | 0         |
| REG_REFH | REG_REFH | REG_REF | REG_REFL | REG_REFL | REG_REFL | REG_REFL_ | REG_REFL_ |
| _CODE2   | _CODE1   | H_CODE0 | _CODE4   | _CODE3   | _CODE2   | CODE1     | CODE0     |
| RW_0     | RW_0     | RW_0    | RW_0     | RW_0     | RW_0     | RW_0      | RW_0      |

| 位 15 | REG_COMP1CT: 比较器 COMP1 使能位 |
|------|----------------------------|
|      | 0:关闭比较器 COMP1              |
|      | 1: 打开比较器,同时打开通往 CAP1 通道    |
| 位 14 | REG_COMP2CT: 比较器 COMP2 使能位 |
|      | 0:关闭比较器 COMP2              |
|      | 1: 打开比较器,同时打开通往 CAP2 通道    |
| 位 13 | REG_COMP3CT: 比较器 COMP3 使能位 |
|      | 0:关闭比较器 COMP3              |
|      | 1: 打开比较器,同时打开通往 CAP3 通道    |



| 位 12    | REG_COMPHCT:比较器 COMPH 使能位                                      |
|---------|----------------------------------------------------------------|
|         | 0:关闭比较器 COMPH                                                  |
|         | 1:打开比较器 COMPH                                                  |
| 位 11    | REG_COMPLCT:比较器 COMPL 使能位                                      |
|         | 0:关闭比较器 COMPL 位                                                |
|         | 1:打开比较器 COMPL 位                                                |
| 位 10    | REG_DACCT:内部两个 5bit DAC 使能位;                                   |
|         | 0: 关闭 DAC                                                      |
|         | 1:使能 DAC                                                       |
| 位 9~位 5 | REG_REFH_CODE4 ~ REG_REFH_CODE0: 5 位 DAC 输入数据位,高阈值输            |
|         | 入; $V_{out} = \frac{V_{CCA}}{32} \times CODE5$ , VCCA 典型值 3.0V |
| 位 4~位 0 | REG_REFL_CODE4~ REG_REFL_CODE0: 5 位 DAC 输入数据位, 低阈值输            |
|         | 入; $V_{out} = \frac{V_{CCA}}{32} \times CODE5$ , VCCA 典型值 3.0V |

## 3. COMPH/COMPL 状态寄存器—7103h

| 15    | 14    | 13   | 12   | 11   | 10   | 9    | 8    |
|-------|-------|------|------|------|------|------|------|
| СОМРН | COMPL | PDPA | 保留   | 保留   | 保留   | 保留   | 保留   |
| R_X   | R_X   | RW_0 | RW_0 | RW_0 | RW_0 | RW_0 | RW_0 |

| 7       | 6       | 5       | 4       | 3       | 2       | 1        | 0        |
|---------|---------|---------|---------|---------|---------|----------|----------|
| REG_INP | REG_INP | REG_INP | REG_INP | REG_INP | REG_INP | REG_INPU | REG_INPU |
| UT_CT7  | UT_CT6  | UT_CT5  | UT_CT4  | UT_CT3  | UT_CT2  | T_CT1    | T_CT0    |
| RW 0     | RW 0     |

|          | COMPH: 比较器 COMPH 状态位;              |  |  |  |  |  |
|----------|------------------------------------|--|--|--|--|--|
| 位 15     | 1: A0_COMP0 输入电压超过上限电压;            |  |  |  |  |  |
|          | 0:A0_COMP0 输入电压未超过上限电压;            |  |  |  |  |  |
|          | COMPL: 比较器 COMPH 状态位;              |  |  |  |  |  |
| 位 14     | 1:A0_COMPO 输入电压低于下限电压;             |  |  |  |  |  |
|          | 0: A0_COMP0 输入电压未低于下限电压;           |  |  |  |  |  |
|          | PDPA : PDPA 引脚输入选择位;               |  |  |  |  |  |
| 位 13     | 0: PDPAINTA 输入为 A0_COMP0           |  |  |  |  |  |
|          | 1: PDPAINTA 输入为 B7_OP4N            |  |  |  |  |  |
| 位 12~位 8 | 保留                                 |  |  |  |  |  |
|          | REG_INPUT_CT7: B7_OP4N 复用为数字输入端口使能 |  |  |  |  |  |
| 位 7      | 0: B7_OP4N 为模拟信号输入端口               |  |  |  |  |  |



## 进芯电子 Advancechip ADM16F03A1 Digital Signal Processor

| 111111 | 101 05/11 Digital Signal I Toccssol | V 1 |
|--------|-------------------------------------|-----|
|        | 1:B7_OP4N 为数字输入端口,可输入数字信号至 GPIOE5   |     |
|        | REG_INPUT_CT6: B6_OP4P 复用为数字输入端口使能  |     |
| 位 6    | 0: B6_OP4P 为模拟信号输入端口                |     |
|        | 1:B6_OP4P 为数字输入端口,可输入数字信号至 GPIOE6   |     |
|        | REG_INPUT_CT5: B5_OP3N 复用为数字输入端口使能  |     |
| 位 5    | 0: B5_OP3N 为模拟信号输入端口                |     |
|        | 1:B5_OP3N 为数字输入端口,可输入数字信号至 GPIOE7   |     |
|        | REG_INPUT_CT4: B4_OP3P 复用为数字输入端口使能  |     |
| 位 4    | 0: B4_OP3P 为模拟信号输入端口                |     |
|        | 1:B4_OP3P 为数字输入端口,可输入数字信号至 GPIOF0   |     |
|        | REG_INPUT_CT3: B3_OP2N 复用为数字输入端口使能  |     |
| 位 3    | 0: B3_OP2N 为模拟信号输入端口                |     |
|        | 1:B3_OP2N 为数字输入端口,可输入数字信号至 GPIOF1   |     |
|        | REG_INPUT_CT2: B3_OP2P 复用为数字输入端口使能  |     |
| 位 2    | 0: B2_OP2P 为模拟信号输入端口                |     |
|        | 1:B2_OP2P 为数字输入端口,可输入数字信号至 GPIOF2   |     |
|        | REG_INPUT_CT1: OP1N 复用为数字输入端口使能     |     |
| 位 1    | 0: OP1N 为模拟信号输入端口                   |     |
|        | 1:OP1N 为数字输入端口,可输入数字信号至 GPIOF3      |     |
|        | REG_INPUT_CT2: B3_OP1P 复用为数字输入端口使能  |     |
| 位 0    | 0: OP1P 为模拟信号输入端口                   |     |
|        | 1:OP1P 为数字输入端口,可输入数字信号至 GPIOF4      |     |

## 4. COMP 配置寄存器—753Ch

| 15       | 14       | 13       | 12       | 11    | 10   | 9        | 8        |
|----------|----------|----------|----------|-------|------|----------|----------|
| REG PLL3 | REG PLL2 | DEC DIL1 | DEC DITO | /口400 | 归郊   | REG_CPL_ | REG_CPL_ |
| KEG_PLLS | REG_PLLZ | REG_PLL1 | REG_PLL0 | 保留    | 保留   | HYTU1    | HYTU0    |
| R_X      | R_X      | R_X      | R_X      | RW_0  | RW_0 | RW_0     | RW_0     |

| 7        | 6        | 5       | 4       | 3       | 2       | 1        | 0        |
|----------|----------|---------|---------|---------|---------|----------|----------|
| REG_CPH_ | REG_CPH_ | REG_CP3 | REG_CP3 | REG_CP2 | REG_CP2 | REG_CP1_ | REG_CP1_ |
| HYTU1    | HYTU0    | _HYTU1  | _HYTU0  | _HYTU1  | _HYTU0  | HYTU1    | HYTU0    |
| RW_0     | RW_0     | RW_0    | RW_0    | RW_0    | RW_0    | RW_0     | RW_0     |

| /÷ 15 /÷ 10 | REG_PLL3~REG_PLL0:            |
|-------------|-------------------------------|
| 位 15~位 12   | 时钟不交叠时间控制位,出厂已校准,禁止修改此值       |
| 位 11        | 保留                            |
| 位 10        | 保留                            |
| /÷ 0 /÷ 0   | REG_CPL_HYTU1~ REG_CPL_HYTU0: |
| 位 9 ~ 位 8   | 比较器 COMPL 迟滞电压调整控制位           |
| 位7~位6       | REG_CPH_HYTU1~ REG_CPH_HYTU0: |



|                  | 比较器 COMPH 迟滞电压调整控制位           |
|------------------|-------------------------------|
| <i>12 - 12 1</i> | REG_CP3_HYTU1~ REG_CP3_HYTU0: |
| 位 5~位 4          | 比较器 COMP3 迟滞电压调整控制位           |
| 42 42            | REG_CP2_HYTU1~ REG_CP2_HYTU0: |
| │                | 比较器 COMP2 迟滞电压调整控制位           |
| 1÷ 1 1÷ 0        | REG_CP1_HYTU1~ REG_CP1_HYTU0: |
| │                | 比较器 COMP1 迟滞电压调整控制位           |

## 表 17.1 COMP 迟滞电压配置关系

| REG_CPx_HYTU1 | REG_CPx_HYTU0 | 迟滞电压 (/mV) |
|---------------|---------------|------------|
| 0             | 0             | 50         |
| 0             | 1             | 65         |
| 1             | 0             | 35         |
| 1             | 1             | 0          |

注: REG\_CPX\_HYTU1、REG\_CPX\_HYTU0中CPX代表COMPL, COMPH, COMP3, COMP2, COMP1。



## 18 数字延时滤波

## 18.1 数字延时滤波模块结构

数字延时滤波单元,可用作 CAP1~CAP3, XINT1, XINT2/ADCSOC 以及 PDPINTA等信号输入滤波; CAP1, CAP2, CAP3 配置控制位共用, PDPINTA单独配置控制, XINT1和 XINT2配置控制位共用。

输入电平在满足跳变后持续 6 (可通过数字滤波模块寄存器设置) 个及以上时钟周期的高/低状态时, 信号才被有效捕捉。

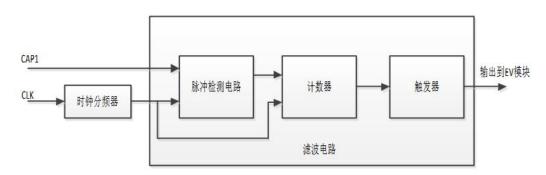



图 18.1 CAP1 数字延时滤波示意图

以 CAP1 信号为例,图 18.1 为 CAP1 数字延时滤波示意图,可通过 bit[4:0]配置延时电路的计数时钟,得到不同的延时滤波时间。表 18.1 为 150M 主频下延时滤波时间参考配置表。

| 表 18.1 延时滤波时间参考配置表 |     |             |  |  |  |
|--------------------|-----|-------------|--|--|--|
| Bit[4:0]           | 周期数 | 滤波宽度@150MHz |  |  |  |
| 00000              | 6   | 40.02ns     |  |  |  |
| 00001              | 12  | 80.04ns     |  |  |  |
| 00010              | 20  | 133.4ns     |  |  |  |
| 00011              | 40  | 266.8ns     |  |  |  |
| 00100              | 60  | 400.2ns     |  |  |  |
| 00101              | 80  | 533.6ns     |  |  |  |
| 00110              | 100 | 667ns       |  |  |  |
| 00111              | 120 | 800.4ns     |  |  |  |

表 18.1 延时滤波时间参考配置表

| ADIVITORUSE | AT Digital Signal Froces | SUI VI   |
|-------------|--------------------------|----------|
| 01000       | 140                      | 933.8ns  |
| 01001       | 160                      | 1067.2ns |
| 01010       | 180                      | 1200.6ns |
| 01011       | 200                      | 1334ns   |
| 01100       | 220                      | 1467.4ns |
| 01101       | 240                      | 1600.8ns |
| 01110       | 260                      | 1734.2ns |
| 01111       | 280                      | 1867.6ns |
| 10000       | 300                      | 2001ns   |
| 10001       | 320                      | 2134.4ns |
| 10010       | 340                      | 2267.8ns |
| 10011       | 360                      | 2401.2ns |
| 10100       | 380                      | 2534.6ns |
| 10101       | 400                      | 2668ns   |
| 10110       | 420                      | 2801.4ns |
| 10111       | 440                      | 2934.8ns |
| 11000       | 460                      | 3068.2ns |
| 11001       | 480                      | 3201.6ns |
| 11010       | 500                      | 3335ns   |
| 其它          | 500                      | 3335ns   |

滤波模块配置如上表所示, 当配置为0时, 输入脉冲小于6个周期将会被过滤掉。 最大滤波宽度为500个时钟周期。

## 18.2 数字延时滤波模块寄存器说明

#### 18.2.1 数字延时滤波控制寄存器

#### 1. 数字滤波控制寄存器—753Fh

| 15       | 14      | 13      | 12      | 11      | 10      | 9        | 8        |
|----------|---------|---------|---------|---------|---------|----------|----------|
| CfgError | XINTCTL | XINTCTL | XINTCTL | XINTCTL | XINTCTL | PDPINTCT | PDPINTCT |
| Cigerioi | _REG4   | _REG3   | _REG2   | _REG1   | _REG0   | L_REG4   | L_REG3   |
| R_0      | R_X     | R_X     | R_X     | RW_0    | RW_0    | RW_0     | RW_0     |



V1.4

| 7       | 6       | 5        | 4       | 3       | 2       | 1        | 0        |
|---------|---------|----------|---------|---------|---------|----------|----------|
| PDPINTC | PDPINTC | PDPINTCT | CAPCTL_ | CAPCTL_ | CAPCTL_ | CAPCTL_R | CAPCTL_R |
| TL_REG2 | TL_REG1 | L_REG0   | REG4    | REG3    | REG2    | EG1      | EG0      |
| RW_0    | RW_0    | RW_0     | RW_0    | RW_0    | RW_0    | RW_0     | RW_0     |

| 位 15      | CfgError:Flash 配置寄存器错误标志位                              |
|-----------|--------------------------------------------------------|
|           | 0: 正确                                                  |
|           | 1: 错误                                                  |
| 位 14~位 10 | XINTCTL_REG4~XINTCTL_REG0:XINT1 和 XINT2/ADCSOC 延时电路计数  |
|           | 时钟设置,详细参考表 18-1                                        |
| 位 9~位 5   | PDPINTCTL _REG4 ~ PDPINTCTL _REG0: PDPINTA 延时电路计数时钟设置, |
|           | 详细配置参考表 18-1                                           |
| 位 4~位 0   | CAPCTL _REG4 ~ CAPCTL _REG0: CAP1 ~ CAP3 延时电路计数时钟设置,   |
|           | 详细配置参考表 18-1                                           |



## 19 供电

### 19.1 片上 LDO 电源管理

该系列器件包含 4 个电压域: 12V 电压域 (VDRV), 3.2~5.5V 电压域 (VDDIO), 1.2V 电压域 (VDD\_1V2), 3V 电压域 (VCCA)。芯片内部集成多个 LDO 电路, 支持单电源供电,仅需对 LDO\_IN 输入 4.5~40V 电源, VDRV、VOOIO、VDD\_1V2、VCCA电源引脚与地之间分别连接去耦电容,去耦电容应尽可能排布靠近器件。图 19.1 展示了芯片内各模块 (除 GPIO 外)的供电关系,GPIO 驱动电源为 VDDIO。

片内集成的四个 LDO, 分别为一个为片内预驱供电的 LDO, 输入  $4.5 \sim 40 \text{V}$  输出 12 V; 一个为数字 I/O 供电的 LDO, 输入 12 V 输出 5 V; 一个为 ADC 供电的  $LDO_3$ , 输入  $3.2 \sim 5.5 \text{V}$  输出 3 V, 为获得较好的电源纹波抑制效果, $LDO_3$ 供电引脚应接大于一个 2.2 uF 并联一个 0.1 uF 的去耦电容;一个为内核和锁相环供电 $LDO_{CK}$ ,输入  $3.2 \sim 5.5 \text{V}$  输出 1.2 V,为获得较好的电源纹波抑制效果, $LDO_{CK}$ 引脚应接一个大于 2.2 uF 并一个 0.1 uF 的去耦电容。 $LDO_3$ , $LDO_{CK}$ 参考基准均来源于内部带隙基准输出的 1.2 V, $LDO_{CK}$ 参考基准率源于内部 1 V 电压基准。该 1 V 基准同时作为 1 V 电压基准。该 1 V 基准同时作为 1 V 电压基准。该 1 V 基准同时作为 1 V 电压基准由 1 V 基准经过运放比例缩放后获得。

 $V_{bus}$ 供电范围为  $4.5V\sim40V$ 。布板时,建议数字地、模拟地和预驱地分开单点连接。



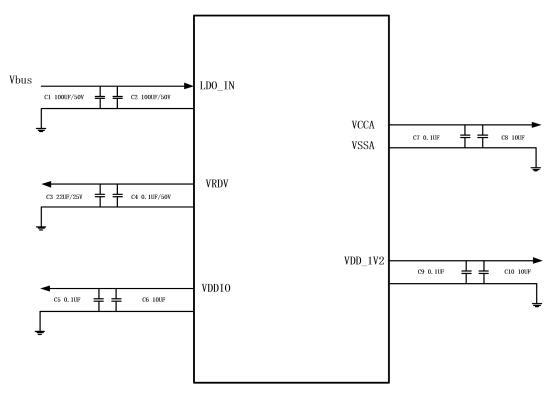



图 19.1 芯片供电连接参考图示



## 20 栅极驱动模块

### 20.1 预驱模块典型应用

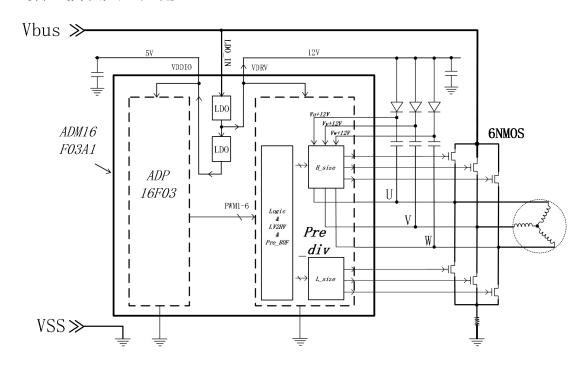



图 20.1 驱动模块典型应用图

驱动模块典型应用图中,自举电容的值视具体应用而定,MOS 管 G 级的限流电阻用于调节驱动信号的上升时间。驱动模块第一相上、下桥输出信号 $HO_1$ 和 $LO_1$ 的前级输入分别对应 PWM1、PWM2, $HO_2$ 和 $LO_2$ 的前级输入分别对应 DSP 的 PWM3、PWM4, $HO_3$ 和 $LO_3$ 的前级输入分别对应 PWM5、PWM6。

需注意的是,控制预驱模块的 $HO_x$ 和 $LO_x$ 前级输入 PWM 信号,均为高电平有效。预驱模块自带 0.5uS 硬件死区,可防止 H 桥直通。

系统设计上,仅需提供 $V_{bus}$ 供电电源和少量的外围器件,即可实现 BLDC、PMSM 等电机的带传感器或无传感器的方波或正弦波控制算法。



## 21 电气参数

## 21.1 建议的运行条件

|                              |                   |           | 最小值      | 标称值    | 最大值      | 单位  |
|------------------------------|-------------------|-----------|----------|--------|----------|-----|
| $V_{LDO\_IN}$                | 母线输入电压            |           | 4.5      | 12     | 40       | V   |
| $V_{\text{DDIO}}$            | 控制器 IO 电源电压,I/O   |           | 3.2      | 3.3    | 5.5      | V   |
| $V_{DD_1V2}$                 | 控制器内核源电压,CPU      |           |          | 1.2    |          | V   |
| VSS                          | 电源接地              |           |          | 0      |          | V   |
| $V_{CCA}$                    | ADC 电源电压/ADC 参考基准 |           |          | 3      |          | V   |
| f <sub>CLKOUT</sub>          | 设备时钟频率 (系统时钟)     |           |          |        | 150      | MHz |
| V <sub>IH</sub> <sup>③</sup> | 高电平输入电压           | 所有输入      | 0.7*VDDI | JV C   | DDIO+0.3 | V   |
| $V_{IL}$                     | 低电平输入电压           | 所有输入      | VSS-0.3  | 0.     | 3*VDDIO  | V   |
|                              |                   | 所有 GPIO   |          |        | 4        |     |
| $I_{OH}$                     | 高电平输出源电流          | 所有 GPIO   |          |        | 4        | mA  |
|                              |                   | 所有 GPIO   |          |        | 4        |     |
|                              |                   | 所有 GPIO   |          |        | 4        |     |
| $I_{OL}$                     | 低电平输出灌电流          | 所有 GPIO   |          |        | 4        | mA  |
|                              |                   | 所有 GPIO   |          |        | 4        |     |
| N <sub>f</sub>               | 阵列的闪存耐久性 (写/擦除周期) | -40℃至 85℃ |          | 100000 |          | 周期  |

## 21.2 建议运行温度范围内的电气特性

| 参数                                        |                    | 测试条件               | 最小值       | 标称值       | 最大值 | 单位 |
|-------------------------------------------|--------------------|--------------------|-----------|-----------|-----|----|
| V <sub>OH</sub> 高电平输出                     | 由压                 | IOH=IOH 最大值        | VDDIO-0.8 |           |     | V  |
| VOH IBJ <del>-C</del> T-#DILL             | - <del>C</del> /Tr | IOH=50uA           | VDDIO-0.2 | VDDIO-0.2 |     |    |
| Vol 低电平输出电                                | 电压                 | IOL=IOL 最大值        |           |           | 0.4 | V  |
| L. 输入由流 (纸由亚) (1)                         | L+÷/±46            | Vin=0V, VDDIO=3.3V |           | 100       |     | uA |
|                                           | 上拉使能               | Vin=0V, VDDIO=5V   |           | 240       |     | μΑ |
| I <sub>L</sub> 輸入电流 (低电平) <sup>(1)</sup>  | 上拉不使能              | Vin=0V, VDDIO=3.3V |           |           | ±2  | uA |
|                                           |                    | Vin=0V, VDDIO=5V   |           |           | ±2  | uA |
| 1 給》中法(言中亚)(1)                            | 上拉使能               |                    |           |           | ±2  | μΑ |
| │ I <sub>II</sub> 输入电流 (高电平) <sup>①</sup> | 上拉不使能              | 或 5V               |           |           | ±2  | uA |
| loz 输出电流,高阻抗状态 (关闭状态)                     |                    | Vo=VDDIO或0         |           |           | ±2  | μΑ |
| TRSTN 下拉电阻                                |                    |                    |           |           | 15  | kΩ |

<sup>(1)</sup> 除 IOPB3, IOPB1, IOPA7, IOPB2, IOPB0, IOPA6 外所有 IO, IOPB3, IOPB1, IOPA7, IOPB2, IOPB0, IOPA6内部无上拉或下拉,IIH/IIL最大值为±2uA。

## 21.3 减少流耗

该系列器件可关闭不使用的外设模块,达到节省器件流耗的目的。

## 21.4 信号转换电平

器件应用过程中应注意一些信号使用不同的参考电压,详细可参考建议的工作条件。 输出逻辑高电平的下限值为 2.4 V,而输出逻辑低电平的上限值为 0.8 V。图 21.1 展示了 输出电平有效范围。

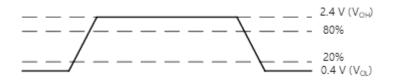



图 21.1 GPIO 输出电平有效范围

#### 输出转换时间定义如下:

对于一个从高电平到低电平的转换,输出不再被认为是高电平的电平为低于 $V_{OH}$ (最小值)的 80%,而输出不再被认为是低电平的电平为高于 $V_{OU}$ (最大值)的 20%。

对于一个从低电平到高电平的转换,输出不再被认为是低电平的电平为高于 $V_{OL}$ (最大值)的 20%,而输出不再被认为是高电平的电平为低于 $V_{OH}$ (最小值)的 80%。

图 21.2 展示了输入电平的有效范围。

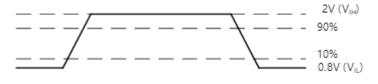



图 21. 2 GPIO 输入电平有效范围

#### 输入转换时间指定如下:

对于一个从高电平到低电平的转换,输入不再被认为是高电平的电平为低于 $V_{IH}$ (最小值)的 90%,而输入不再被认为低电平的电平为高于 $V_{IL}$ (最大值)的 10%。

对于一个从低电平到高电平的转换,输入不再被认为是低电平的电平为高于 $V_{IL}$ (最大值)的 10%,而输入不再被认为高电平的电平为低于 $V_{IH}$ (最小值)的 90%。



## 21.5 时序参数符号

器件规格书中所使用的时序参数符号均参考 JEDEC-100 标准创建。为了缩短符号,

#### 一些引脚名称和其他术语缩写如下:

| CI     | X1/CLKIN     | CO      | CLKOUT    |
|--------|--------------|---------|-----------|
| INT    | XINT1, XINT2 | RS      | 复位引脚 RS   |
| 小写下标和它 | 引的含意:        | 大写字母和符号 | 和它们的含意:   |
| a      | 访问时间         | Н       | 高         |
| С      | 周期时间 (周期)    | L       | 低         |
| d      | 延迟时间         | V       | 有效        |
| f      | 下降时间         | Χ       | 未知变化或无关电平 |
| h      | 保持时间         | Z       | 高阻抗       |
| r      | 上升时间         |         |           |
| su     | 建立时间         |         |           |
| t      | 转换时间         |         |           |
| V      | 有效时间         |         |           |
| W      | 脉冲持续时间 (宽度)  |         |           |

## 21.6 定时参数的通用注释

该系列器件的输出信号(包括 CLKOUT)取自一个内部时钟,所以对于一个指定半周期的所有输出转换在一个相对最小时间偏移下发生。下面时序图中的信号组合也许不一定代表真实的周期。对于真实周期范例,可参考本文档中有关周期的补充说明。

## 21.7 12 位模数转换器 (ADC)

12 位 ADC 的模拟电路有单独的电源总线。这些引脚涉及到 VCCA 和 VSSA。这些隔离的电源设计是为了防止数字逻辑电路 VSS 和 VCC 产生的噪声耦合到模拟模块。在无补充说明,ADC 电平参数以 VSSA 为参考。

## 21.8 ADC 建议运行条件

表 21.1 ADC 建议运行条件

|                  |                         | 最小值 | 正常值 | 最大值 | 单位 |
|------------------|-------------------------|-----|-----|-----|----|
| V <sub>CCA</sub> | 模拟供电电压(内设 LDO,引脚只需外挂电容) |     |     | 3   | V  |
| V <sub>SSA</sub> | 模拟地                     | 0   |     |     | V  |



# 

V1.4

| V <sub>AI</sub> 模拟输入电压,ADCINA0—ADCINB7 | 0 3 | V |
|----------------------------------------|-----|---|
|----------------------------------------|-----|---|

## 21.9 ADC 工作频率设定

## 表 21. 2 ADC 工作频率范围

|          | 最小值 | 最大值 | 单位  |
|----------|-----|-----|-----|
| ADC 运行频率 | 0.1 | 14  | MHZ |

## 21.10 推荐工况下的 ADC 电气特性

## 表 21.3 推荐工况下的 ADC 电气特性

|                                  |                | 1   |      |     |     |
|----------------------------------|----------------|-----|------|-----|-----|
| 参数                               | 测试条件           | 最小值 | 典型值  | 最大值 | 单位  |
| I <sub>CCA</sub> 模拟供电电流          | $V_{CCA} = 3V$ |     |      |     |     |
| I <sub>ADCIN</sub> 模拟输入电流        |                |     |      | ±2  | μA  |
| Cai模拟输入电容                        | 非采样时           |     | 10   |     | pF  |
|                                  | 采样时            |     | 13.5 |     | pF  |
| E <sub>DNL</sub> 微分非线性误差 (3) (4) | 实际步长与理想值之间的误   |     |      | ±2  | LSB |
|                                  | 差              |     |      |     |     |
| E <sub>INL</sub> 积分非线性误差(4)      | 数模转换特性的最大偏移误   |     |      | ±4  | LSB |
|                                  | 差,不包含量化误差      |     |      |     |     |
| t <sub>d(PU)</sub> ADC 上电使能后延迟时间 | 上电后模拟电路稳定所需时   |     |      |     | μS  |
|                                  | 间              |     |      |     |     |
| ZAI模拟输入源阻抗                       | 转换到规格内最小tw所需模  |     |      |     | Ω   |
|                                  | 拟输入源阻抗         |     |      |     |     |
| Offset 偏移误差                      |                | -15 |      | 15  | LSB |
| 片内基准时总增益误差                       |                | -50 |      | 50  | LSB |
| 通道到通道的偏移变化                       |                |     | ±4   |     | LSB |
| 通道到通道的增益变化                       |                |     | ±4   |     | LSB |
| 模拟输入                             |                |     |      |     |     |
| 模拟输入电压(ADCINx对LO)                |                | LO  |      | 3   | V   |
| (6)                              |                |     |      |     |     |
| LO                               |                | -5  |      | 5   | mV  |
|                                  | 内部参考基准 (5)     |     |      |     |     |
| LO                               |                |     | 0    |     | V   |

|                      | <u> </u> |      |       |
|----------------------|----------|------|-------|
| V <sub>CCA</sub>     |          | 3    | V     |
| 温度系数                 |          | 50   | ppm/C |
|                      | AC 技术规范  |      |       |
| SINAD 信噪比+失真(7.8kHz) |          | 61.9 | dB    |
| SNR 信噪比(7.8kHz)      |          | 62.2 | dB    |
| THD 总谐波失真(7.8kHz)    |          | -73  | dB    |
| ENOB 有效位数(7.8kHz)    |          | 10   | Bit   |
| SFDR 无杂散动态范围         |          | 74   | dB    |
| (7.8kHz)             |          |      |       |

- (1) 在 14MHz ADCCLK 上测得。
- (2) 这个表中的所有电压相对 V<sub>SSA</sub>。
- (3) ADC 无丢码。
- (4) 1 个 LSB 代表 3/4096=0.732 mV 的加权值。
- (5) 内部基准的精度对于总体增益十分关键。 电压  $V_{CCA}$  LO 将确定总体精度,针对内部基准选项的温度范围内的增益误差将取决于所使用源的温度参数。
- (6) 应用到一个模拟输入引脚上的高于  $V_{CCA}$  +0.3V 或低于  $V_{SSA}$ -0.3V 的电压有可能暂时影响另外引脚的转换。为了避免这种情况,模拟输入应该被保持在这些限值内。并且应用到一个模拟输入引脚上的高于  $V_{CCA}$  或低于  $V_{SSA}$  的电压会影响 ADC 的性能参数。

## 21.11 预驱模块参数

## 21.11.1 最大额定值

| ANIL FOR  | <i>**</i> -□ | 推荐值                        |     |                            |    |  |  |
|-----------|--------------|----------------------------|-----|----------------------------|----|--|--|
| 参数名称      | 符号           | 最小值                        | 典型值 | 最大值                        | 单位 |  |  |
| 上桥臂自举电源   | $V_B$        | <i>V</i> <sub>S</sub> -0.3 |     | <i>V</i> <sub>S</sub> +20  | V  |  |  |
| 上桥臂悬浮端    | $V_{S}$      | -0.3                       |     | 200                        | V  |  |  |
| 上桥臂驱动输出电压 | $V_{HO}$     | <i>V<sub>B</sub></i> -0.3  |     | $V_B + 0.3$                | V  |  |  |
| 电源        | $V_{DRV}$    | -0.3                       |     | 20                         | V  |  |  |
| 下桥臂驱动输出电压 | $V_{LO}$     | -0.3                       |     | <i>V<sub>cc</sub></i> +0.3 |    |  |  |
| 最大功耗      | $P_D$        |                            |     | 800                        | mW |  |  |
| 工作结温范围    | $T_{j}$      |                            |     | 150                        |    |  |  |
| 储存温度范围    | $T_{stg}$    | -50                        |     | 150                        |    |  |  |
| ESD_HBM   |              |                            | 2   |                            | KV |  |  |

#### 注:

- (1) 器件运行条件超过上述各项最大额定值时可能造成永久性损伤。上述参数仅是运行条件的极大值,禁止将器件使用在超出该规范下运行。如器件长时间工作在最大极限条件下,将影响器件运行稳定性。
- (2) 无特殊说明, 所有的电压均以 GND 作为参考。

### 21.11.2 推荐工作条件 (无特别说明情况下,测试条件为 $T_A$ =25℃)



| ANKL FORE | 44-       |                    | 24/2                     |                          |            |
|-----------|-----------|--------------------|--------------------------|--------------------------|------------|
| 参数名称      | 符号        | 最小值                | 典型值                      | 最大值                      | 单位         |
| 电源        | $V_{DRV}$ | 10                 | 15                       | 18                       | V          |
| 上桥臂悬浮端    | $V_S$     | 24                 |                          | 180                      | V          |
| 上桥臂自举电源   | $V_B$     | V <sub>S</sub> +10 | <i>V<sub>S</sub></i> +15 | <i>V<sub>S</sub></i> +18 | V          |
| 上、下桥臂负载电容 | $C_L$     |                    |                          | 22                       | nF         |
| 上、下桥臂输入电平 | $V_{IN}$  | 0                  | 3.3                      | 5.0                      | V          |
| 工作温度      | $T_A$     | -40                |                          | 125                      | °C         |
| 结温        | $T_{J}$   | -40                |                          | 150                      | $^{\circ}$ |

## 21.11.3 静态电气参数

静态电气参数(无特别说明,测试条件为 $V_{BIAS}=V_{DRV}=V_B=15$ V, $T_A=25$ °C)

| AND THE                              | 符号                  |     | 24/2 |     |    |
|--------------------------------------|---------------------|-----|------|-----|----|
| 参数名称                                 |                     | 最小值 | 典型值  | 最大值 | 単位 |
| 电源电压                                 | $V_{\mathit{DRV}}$  | 10  | 15   | 18  | V  |
| 静态电流 V <sub>IN</sub> = 0V / 5V       | $I_{QCC}$           |     | 210  | 300 | uA |
| 上桥臂自举静态电流                            | $I_{QBS}$           |     | 320  | 400 | uA |
| <i>V<sub>IN</sub></i> = 0V / 5V      |                     |     |      |     |    |
| 输入高电平                                | $V_{IH}$            | 2.5 |      |     | nF |
| 输入低电平                                | $V_{IL}$            |     |      | 0.8 | V  |
| 上桥臂输出高电平 $I_{0+} = 10mA$             | $V_{HOH}$           |     |      | 100 | mV |
| 上桥臂输出低电平 $I_{0-}=10mA$               | $V_{HOL}$           |     |      | 100 | mV |
| 下桥臂输出高电平 $I_{0+} = 10mA$             | $V_{LOH}$           |     |      | 100 | mV |
| 下桥臂输出低电平 $I_{0-}=10mA$               | $V_{LOL}$           |     |      | 100 | mV |
| 逻辑 1 的输入电流 HIN = 5V, LIN = 0V        | $I_{N+}$            |     | 85   |     | uA |
| 逻辑 0 的输入电流 HIN = 0V, LIN = -5V       | $I_{N-}$            |     | 85   |     | uA |
| 欠压保护上点                               | $VCC_{UV+}$         |     | 4.5  |     | V  |
| 欠压保护下点                               | VCC <sub>UV</sub> _ |     | 4.2  |     | V  |
| 输出灌电流,驱动高输出对地短 路 $P_W \leq 10 \mu S$ | $I_{O+}$            | 0.8 | 1    |     | А  |
| 输出拉电流,驱动低输出对地短                       | I <sub>0-</sub>     | 1.3 | 1.5  |     | А  |



 $BP_W \le 10\mu S$ 

# 21.11.4 动态电气参数 (无特别说明情况下, $V_{BIAS} = V_{DRV} = V_B = 15$ V, $C_L = 1000$ pF, $T_A = 25$ °C)

|                |           |           | 241) |     |    |  |  |  |
|----------------|-----------|-----------|------|-----|----|--|--|--|
| 参数名称           | 符号        | 最小值       | 典型值  | 最大值 | 单位 |  |  |  |
| 高端输出 HO 开关时间特性 |           |           |      |     |    |  |  |  |
| 上升延时           | $T_{on}$  |           | 300  |     | ns |  |  |  |
| 下降延时           | $T_{off}$ |           | 100  |     | ns |  |  |  |
| 上升时间           | $T_r$     |           | 40   |     | ns |  |  |  |
| 下降时间           | $T_f$     |           | 20   |     | ns |  |  |  |
|                | 低端输出      | 出 LO 开关时间 | ]特性  |     |    |  |  |  |
| 上升延时           | $T_{on}$  |           | 160  |     | ns |  |  |  |
| 下降延时           | $T_{off}$ |           | 55   |     | ns |  |  |  |
| 上升时间           | $T_r$     |           | 35   |     | ns |  |  |  |
| 下降时间           | $T_f$     |           | 20   |     | ns |  |  |  |
| 死区时间特性         |           |           |      |     |    |  |  |  |
| 死区时间           | DT        |           | 200  |     | ns |  |  |  |
| 上升和下降死区时间差值    | MT        |           | 10   |     | ns |  |  |  |



## 22 机械数据

LQFP48 单位 mm

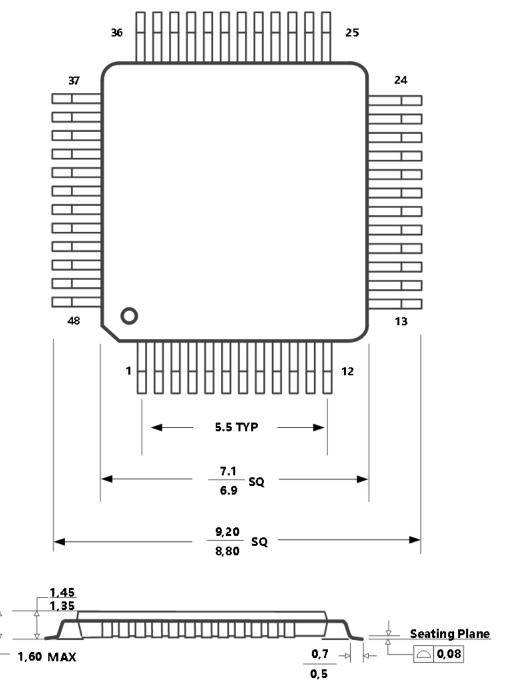



图 22.1 LQFP48 封装外形尺寸图

QFN48

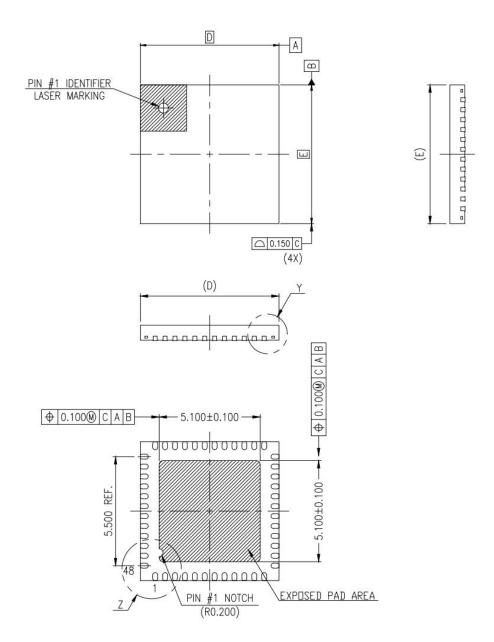
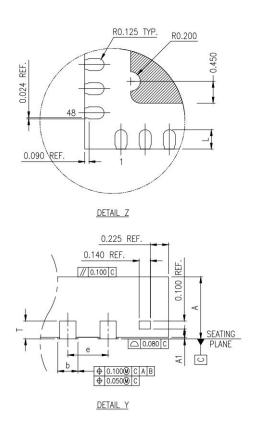




图 22. 2 QFN48 封装外形尺寸图





DIMENSION LIST (FOOTPRINT: 0.800)

| S/N | SYM | DIMENSIONS          | REMARKS         |
|-----|-----|---------------------|-----------------|
| 1   | Α   | 0.750±0.050         | OVERALL HEIGHT  |
| 2   | A1  | 0.020 +0.030 -0.020 | STANDOFF        |
| 3   | D   | 7.000±0.100         | PKG. LENGTH     |
| 4   | E   | 7.000±0.100         | PKG. WIDTH      |
| 5   | L   | 0.400±0.100         | FOOT LENGTH     |
| 6   | Т   | 0.203 REF           | FRAME THICKNESS |
| 7   | b   | 0.250±0.050         | LEAD WIDTH      |
| 8   | е   | 0.500 BASE          | LEAD PITCH      |

图 22. 3 QFN48 封装外形尺寸图 (续)



## 23 重要注意事项及声明

Advancechip 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用 Advancechip 产品进行设计使用。您将对以下行为独自承担全部责任: (1)针对您的应用选择合适的 Advancechip 产品; (2)设计、验证并测试您的应用; (3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。进芯电子对您使用所述资源的授权仅限于开发资源所涉及 Advancechip 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它进芯电子或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,进芯电子对此概不负责,并且您须赔偿由此对进芯电子及其代表造成的损害。



## 联系方式

公司网址: www.advancechip.com

联系邮箱: sales@advancechip.com

联系电话: 0731-88731027 (长沙)

总部地址: 长沙高新开发区东方红北路 601 号湖南媒体艺术产业园 A5 栋

销售中心: 南京市秦淮区卡子门大街 19号 6号楼 15层

